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Overview
In this document, we first show a comparison example of the standard self-attention and our proposed top-k self-attention

in Section 1. Then, we conduct a user study in Section 2. Next, we analyse the generalization ability and model complexity
of other tasks in Section 3-4. In Section 5, we show more comparisons. In Section 6, we investigate the impact of deraining
performance on downstream vision tasks. Finally, we show more visual comparisons in Section 7.

1. Standard v.s Top-k Self-attention
Following [6], Figure 1 shows an example of normalizing a row vector of the similarity matrix in the standard self-attention

(a) and the top-k self-attention (b), respectively. In our developed TKSA, we mask out the unnecessary elements assigned
with lower attention weights in the attention matrix. Thus, such dynamic selection makes the attention weight matrix from
dense to sparse. We further visualize feature maps of the middle layer of the model created by Q×K in Figure 2. As can be
seen, our method can generate a sparse attention map and produce a much clearer recovery result.

(a) native softmax in the standard self-attention (b) top-k selection in our developed TKSA

Figure 1. An example of normalizing a row vector of the similarity matrix in the standard self-attention (a) and the top-k self-attention (b),
respectively. The TKSA keeps the largest K similarity scores between the queries and the keys for the self-attention computing, thereby
facilitating better feature aggregation.

2. User Study
We conduct a user study to evaluate the results of different methods. A user-study database is based on the real-world

deraining results from the Internet-Data dataset. Users can choose the image with the best deraining performance from a
group of images. We make the methods anonymous and randomly sort the images in each group to ensure fairness. We
distribute the questionnaire to a wide range of online users without constraints, and finally obtain answers from a total of 186
human evaluators. Figure 3 shows the averaged selection percentage for each method. Our method performs better according
to most of human evaluators.
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(a) Feature map w/o Top-k (b) Recovery result w/o Top-k (c) Feature map w Top-k (d) Recovery result w Top-k

Figure 2. Feature visualization results of the middle layer of the model created by Q ×K (a, c). Recovery results w or w/o Top-k (b, d).
Our method can generate a sparse attention map and produce a clearer recovery result.
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Figure 3. Averaged selection percentage of user study.

3. Generalization In Other Tasks
We extend our framework to the image denoising task. Table 1 reports results of different methods on the SIDD dataset [1].

Our method achieves competitive performance, suggesting generation of our approach in other related restoration tasks.

Table 1. Quantitative comparison (PSNR / SSIM) on the SIDD dataset.

Methods MPRNet [20] Uformer [15] Restormer [19] IDT [16] DRSformer
PSNR / SSIM 39.71 / 0.958 39.77 / 0.959 40.02 / 0.960 39.79 / 0.959 39.98 / 0.960

4. Model Complexity
Table 2 shows the complexity comparisons. Since we introduce top-k calculation and cross-scale fusion into our model,

our method has limitations in the model efficiency. We will apply the pruning or distillation scheme to maintain the original
deraining performance while achieving credible model compression.

Table 2. Comparison of complexity on a 256× 256 image.

Methods MSPFN [7] IPT [2] Uformer [15] Restormer [19] IDT [16] DRSformer
FLOPs (G) 595.5 / 45.9 174.7 61.9 242.9

Parameters (M) 13.4 115.5 50.8 26.1 16.4 33.7



5. More Comparisons
As the method [11] does not provide code, we refer to the results of their paper. Table 3 reports quantitative results trained

on the Rain100L and Rain100H. Our method still achieves the highest PSNR and SSIM values.

Table 3. Quantitative comparison (PSNR / SSIM) with [9, 11].

Methods ETDNet [11] DRT [9] DRSformer (Ours)
Rain100L 41.09 / 0.986 37.61 / 0.948 42.49 / 0.990
Rain100H 32.35 / 0.929 29.47 / 0.846 33.79 / 0.937

In addition, we also evaluate our method using another dataset, i.e, RainDS-Real [12], which collects more challenging
data pairs corrupted by raindrops and rain streaks. As we mainly focus on removing rain streaks, we only adopt a subset
of RainDS-Real, named Real-RS100, containing 150 real image pairs and 100 test images. Table 4 and Figure 7 show the
quantitative and qualitative results on the RainDS-Real dataset respectively.

Table 4. Quantitative comparison (PSNR / SSIM) on the RainDS-Real dataset.

Methods SPDNet [18] Uformer [15] Restormer [19] IDT [16] DRSformer
PSNR / SSIM 26.47 / 0.7263 26.83 / 0.7285 27.09 / 0.7463 27.12 / 0.7388 27.24 / 0.7476

6. Impact on Downstream Vision Tasks
To investigate the impact of deraining performance on downstream vision tasks, e.g., object recognition, we use Google

Vision API tool to evaluate corresponding rain-free outputs. Comparing Figure 4 (a) and (b), the recognition accuracies
are improvement by using our deraining results, indicating that DRSformer can better facilitate subsequent detection perfor-
mance. Similar to [3, 18], Figure 4 (c) compares the averaged confidences of different deraining models in recognizing rainy
weather on 20 real rainy images. When confidence is lower, the rain is more light, which shows that the better deraining
performance. As one can see, our net can eliminate more rain streaks, resulting in the largest decline, which further verify its
effectiveness.

(a) (b) (c)

Figure 4. Comparison results tested on the Google Vision API. (a-b) Object recognition results for the input rainy image and our derained
image; (c) The averaged confidences in recognizing rain. Note that lower scores indicate better performance.

7. More Experimental Results
In this section, we show more experimental results to demonstrate the effectiveness of the proposed method. Figures 5-7

show the visual comparison results on the synthetic dataset, including Rain200H [17], DID-Data [21] and DDN-Data [4].
Compared to other methods, our DRSformer can generate high-quality deraining results with more accurate detail and texture
recovery. Furthermore, Figures 8 also show the visual comparison results on the real-world dataset, Real-RS100 [12]. Our
method can successfully remove most rain streaks and own visual pleasant recovery results.



(a) Rainy Input (b) MPRNet [20] (c) DualGCN [5]

(d) SPDNet [18] (e) Uformer [15] (f) Restormer [19]

(g) IDT [16] (h) DRSformer (Ours) (i) Ground Truth

Figure 5. Visual comparison results on the Rain200H dataset [17]. The proposed method generates high-quality deraining results with
more accurate detail and texture recovery.



(a) Rainy Input (b) MPRNet [20] (c) DualGCN [5]

(d) SPDNet [18] (e) Uformer [15] (f) Restormer [19]

(g) IDT [16] (h) DRSformer (Ours) (i) Ground Truth

Figure 6. Visual comparison results on the DDN-Data dataset [4]. The proposed method generates high-quality deraining results with more
accurate detail and texture recovery.



(a) Rainy Input (b) DSC [10] (c) DDN [4] (d) RESCAN [8]

(e) PReNet [13] (f) MPRNet [20] (g) DualGCN [5] (h) SPDNet [18]

(i) Restormer [19] (j) IDT [16] (k) DRSformer (Ours) (l) Ground Truth

Figure 7. Visual comparison results on the DID-Data dataset [21]. The proposed method generates high-quality deraining results with
more accurate detail and texture recovery.



(a) Rainy Input (b) SPDNet [18]

(c) Restormer [19] (d) IDT [16]

(e) DRSformer (Ours) (f) Ground Truth

Figure 8. Visual comparison results on the Real-RS100 dataset [12]. The proposed method removes most rain perturbation and generates
much clearer recovery results.
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