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Scene BARF Ours ref. NeRF

Synthetic objects 08:18 04:35 04:30
Real-World scenes 10:38 07:42 07:25

Table 1. Average training time (hh:mm).

Scene Chair Drums Ficus Hotdog Lego Materials Mic Ship

nr 0.01 0.05 0.03 0.04 0.07 0.04 0.04 0.09
nt 0.4 0.5 0.3 0.4 0.5 0.3 0.5 0.7

Table 2. Multiplier of pose perturbation for synthetic scenes.

Scene Fern Flower Fortress Horns Leaves Orchids Room T-rex

λ 1×102 1×103 1×105 1×105 1×102 1×102 1×105 1×105

Table 3. Multiplier λ of global alignment objective.

Here we provide more implementation details and ex-
perimental results. We encourage readers to view the sup-
plementary video for an intuitive experience about different
types of bundle-adjusting neural radiance fields.

A. Additional Details

A.1. Time Consumption

We implement all experiments on a single NVIDIA
GeForce RTX 2080 Ti GPU. As shown in Table 1, L2G-
NeRF takes about 4.5 and 8 hours for training in synthetic
objects and real-world scenes, respectively, while training
BARF [1] takes about 8 and 10.5 hours. As a reference, we
also compare time consumption against the ref. NeRF [3]
trained under ground-truth poses (without the requirement
of optimizing poses), showing that L2G-NeRF can achieve
comparable time consumption. The time analysis indicates
that calculating the gradient w.r.t. local pose (local-to-global
registration) is more efficient than calculating the gradient
w.r.t. global pose (global registration).

*Authors contributed equally to this work.
†Corresponding Author.

Scene
Camera pose registration View synthesis quality

Rotation (◦) ↓ Translation ↓ PSNR ↑ LPIPS ↓
1×102 1×103 1×104 1×105 1×102 1×103 1×104 1×105 1×102 1×103 1×104 1×105 1×102 1×103 1×104 1×105

Flower 0.44 0.33 \ \ 0.30 0.24 \ \ 24.59 24.90 \ \ 0.18 0.17 \ \
Horns 0.36 0.24 0.23 0.22 0.80 0.57 0.32 0.27 22.51 22.84 22.82 23.12 0.28 0.28 0.27 0.26

Table 4. Ablation on the global alignment objective multiplier λ.

Figure 1. Convergence w.r.t. camera pose perturbation.

A.2. Camera Pose Perturbation

In all experiments, we always use the same initial con-
ditions for all methods (fixed random seeds). For each ob-
ject of synthetic scenes, we perturb the camera poses with
additive noise as initial poses. Note that the way we add
noise differs from [1], which perturbs ground-truth camera
poses using left multiplication (transform cameras around
the object’s center). Transformed cameras almost still face
the object’s center, and the distances between the cameras
and the object are almost unchanged. In contrast, we per-
turb ground-truth camera poses using right multiplication
(transform cameras around themselves), thereby perturbing
camera viewing directions (not always toward the object’s
center) and camera positions (including the distances from
them to the object), respectively.

The 6-DoF perturbation is parametrized by T = [R|t] ∈
SE(3), where R ∈ SO(3), t ∈ R3, and R is generated by
exponential map exp

(
r
)

from the Lie algebra so(3) to the
Lie group SO(3). The additive rotation noise r ∈ so(3) and
translation noise t ∈ R3 are distributed as r ∼ N (0, nrI)
and t ∼ N (0, ntI), where the multiplier nr and nt are
scene-dependent and given in Table 2.
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Figure 2. Visual comparison of ablation study about op-
timized camera poses (Procrustes aligned) for hotdog ob-
ject. Full L2G-NeRF successfully aligns camera frames
while w/o Lglobal gets stuck at suboptimal poses.
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Figure 3. Ablation study of NeRF on hotdog synthetic object. The image syn-
thesis and the expected depth are visualized with ray compositing in the top
and bottom rows, respectively. Full L2G-NeRF achieves comparable render-
ing quality to the reference NeRF (trained using ground-truth poses), while
ablation w/o Lglobal renders artifacts due to suboptimal registration.
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Figure 4. Visualization of ablation study about registra-
tion for room scene (Procrustes aligned). Results from
L2G-NeRF highly agree with Sf M [4] (colored in black),
whereas w/o Lglobal results in suboptimal alignment.
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Figure 5. Ablation study of NeRF on room real-world scenes from unknown
camera poses. While L2G-NeRF can jointly optimize poses and scenes, L2G-
NeRF produces high fidelity results, which is competitive to reference NeRF
trained using Sf M poses. Ablation w/o Lglobal diverges to wrong poses and
hence produces ghosting artifacts.

Scene

Camera pose registration View synthesis quality
Rotation (◦) ↓ Translation ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Global Local L2G Global Local L2G Global Local L2G ref. Global Local L2G ref. Global Local L2G ref.
BARF w/o Lg Ours BARF w/o Lg Ours BARF w/o Lg Ours NeRF BARF w/o Lg Ours NeRF BARF w/o Lg Ours NeRF

Synthetic objects 7.02 3.63 0.15 29.84 14.34 0.61 20.51 22.70 28.62 29.42 0.82 0.85 0.93 0.94 0.22 0.14 0.07 0.06
Real-World scenes 0.55 23.82 0.46 0.33 10.66 0.32 24.23 20.71 24.54 22.44 0.73 0.64 0.75 0.65 0.23 0.33 0.20 0.29

Table 5. Quantitative results of ablation study about bundle-adjusting neural radiance fields. L2G-NeRF outperforms the local registration
method (ablation w/o Lglobal) and global registration method (BARF) on the average evaluation criteria of both synthetic objects and
real-world scenes, which reveals the advantage of our local-to-global registration process. Translation errors are scaled by 100.

A.3. Convergence

We analyze the convergence of joint optimization on the
Ship scene. We first set the base rotation noise multiplier
nr as 0.01 and the base translation noise multiplier nt as
0.1, then linearly increased them by a common factor of
{nc}9nc=2. As shown in Fig. 1, BARF fails to converge

with nc=4 (nr=0.04,nt=0.4) while L2G-NeRF fails to con-
verge with nc=8 (nr=0.08,nt=0.8). Moreover, we also an-
alyze the influence of individual noise. Let nr=0, BARF
and L2G-NeRF can handle the largest nt of 0.6 and 1.1,
respectively. Let nt=0, BARF and L2G-NeRF can handle
the largest nr of 0.16 and 0.25, respectively. In more noisy
cases (such as random init), all methods cannot converge.
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Figure 6. Ablation study of the neural image alignment experiment. Given color-coded image patches, we aim to recover the alignment
and the neural field of the entire image. L2G-NeRF is able to find proper alignment and reconstruct high-fidelity neural image, while
w/o Lglobal falls into false local alignments that do not obey the geometric constraint (global alignments), which results in ambiguous
registration and distorted reconstruction (cat ears).
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Figure 7. Additional qualitative results of bundle-adjusting neural radiance fields on synthetic scenes. The image synthesis and the expected
depth are visualized with ray compositing in the left and right columns, respectively. While baselines render artifacts due to suboptimal
solutions, L2G-NeRF achieves qualified visual quality, which is comparable to the reference NeRF trained using ground-truth poses.

A.4. Tuning Parameters

We set the multiplier λ of the global alignment objec-
tive to 1× 102 for both the neural image alignment experi-
ment and learning NeRF from imperfect camera poses with
synthetic object-centric scenes. To further solve the chal-
lenging problem of learning NeRF in forward-facing LLFF
scenes from unknown poses, we float the multiplier λ be-
tween 1 × 102 and 1 × 105 (summarized in Table 3) to
achieve preferable results for specific scenes. As shown

in Table 4, a larger λ encourages the model to emphasize
geometric constraints more, achieving better accuracy but
worse robustness (fails to converge on the Flower scene).

B. Ablation Studies

We propose a local-to-global registration method that
combines the benefits of parametric and non-parametric
methods. The key idea is to apply a pixel-wise align-
ment that optimizes photometric reconstruction errors
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Figure 8. Additional visual comparison of the optimized camera poses (Procrustes aligned) for the mic and drums objects. L2G-NeRF
successfully aligns all the camera frames while baselines get stuck at suboptimal solutions.
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Figure 9. Additional novel view synthesis results of NeRF on real-world scenes (LLFF dataset) from unknown camera poses. L2G-NeRF
can optimize for neural fields of higher quality than baselines, while achieving the comparable quality of the reference NeRF model that is
trained under the camera poses provided by Sf M [4].
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Figure 10. Visual comparison of the optimized camera poses (Procrustes aligned) for the t-rex real-world scene. L2G-NeRF successfully
recovers the camera poses from identity transformation, which achieves fewer errors than BARF.
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Figure 11. Visual comparison of optimized camera
poses (Procrustes aligned) for the challenging toys scene
captured under large displacements (hierarchical camera
poses). L2G-NeRF successfully aligns all camera frames,
which highly agrees with Sf M [4] camera poses (colored
in black), while BARF gets stuck at suboptimal solutions.

Ours reference NeRFBARF

Figure 12. Results of NeRF on toys scene. L2G-NeRF achieves comparable
synthesis quality to the reference NeRF (trained under Sf M camera poses).
But BARF fails to recover the proper geometry, which results in artifacts.

BARF Ours reference NeRF

Figure 13. Visual comparison of optimized camera poses
for the challenging foods scene captured under sparse
views. Results from L2G-NeRF highly agree with Sf M,
whereas BARF results in suboptimal alignment.

Ours reference NeRFBARF

Figure 14. Results of NeRF on foods scene. L2G-NeRF outperforms BARF
and even achieves better performance than reference NeRF in the scene where
Sf M [4] struggles with finding accurate registration from sparse views.

Scene

Camera pose registration View synthesis quality
Rotation (◦) ↓ Translation ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Naı̈ve BARF Ours Naı̈ve BARF Ours Naı̈ve BARF Ours ref. Naı̈ve BARF Ours ref. Naı̈ve BARF Ours ref.
NeRF NeRF NeRF

Toys 14.22 179.73 0.42 6.14 24.84 0.33 15.55 11.29 29.58 32.90 0.57 0.49 0.94 0.96 0.50 0.77 0.06 0.04
Foods 5.30 10.99 0.31 7.76 10.15 0.62 19.11 18.02 31.83 24.58 0.71 0.68 0.95 0.89 0.23 0.26 0.05 0.13

Table 6. Quantitative results of bundle-adjusting neural radiance fields on real-world scenes captured using an iPhone under large displace-
ments (toys) or sparse views (foods). L2G-NeRF outperforms baselines and even achieves better performance than reference NeRF that
trained under Sf M poses in the Foods scene, which is hard for Sf M to find accurate camera poses. Translation errors are scaled by 100.
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globally constrain the geometric transformations. We eval-
uate our proposed L2G-NeRF against an ablation (w/o
Lglobal), which builds upon our full model by eliminating
the global alignment objective, i.e., λ = 0. The ablation is
equivalent to a local registration method, while BARF is the
chosen representative global registration method, such that
we unfold the comparison with both of them.

B.1. Ablation on NeRF (3D): Synthetic Objects

We first investigate the ablation study of learning NeRF
from imperfect camera poses. We experiment with 8 syn-
thetic object-centric scenes [3]. The results in Fig. 3 and
Table 5 show that L2G-NeRF achieves better performance
than the ablation w/o Lglobal. Fig. 2 further illustrates that
L2G-NeRF can achieve near-perfect registration while the
ablation w/o Lglobal suffers from suboptimal solutions.
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Figure 15. Results of NeRF on reflective scenes.

B.2. Ablation on NeRF (3D): Real-World Scenes

We further explore the ablation study of employing
NeRF to learn 3D neural fields in real-world scenes with
unknown camera poses. We evaluate on the standard bench-
mark LLFF dataset [2]. Quantitative results are summarized
in Table 5. The ablation w/o Lglobal diverges to wrong
poses (visualized in Fig. 4), producing ghosting artifacts
(shown in Fig. 5). L2G-NeRF outperforms the ablation
w/o Lglobal and achieves high-quality view synthesis that
is competitive to the reference NeRF.

B.3. Ablation on Neural Image Alignment (2D)

We further concrete analysis on the homography image
alignment experiment and visualize the results in Fig. 6.
Alignment with w/o Lglobal results in distorted artifacts (cat
ears) in the recovered neural image due to ambiguous reg-
istration. This is the consequence of w/o Lglobal’s attempt
to directly optimize the pixel agreement metric, which min-
imizes photometric errors but does not obey the geomet-
ric constraint (global alignments). As L2G-NeRF discovers
precise warps, it optimizes neural image with high fidelity.

C. Additional Results

C.1. NeRF (3D): Synthetic Objects

We report additional qualitative results of learning 3D
NeRF from noisy camera poses for synthetic objects in
Fig. 7. The baselines still perform poorly, while L2G-NeRF
can achieve near-perfect registration (reflected in Fig. 8) and
render images with comparable visual quality against refer-
ence NeRF that trained under ground-truth poses.

C.2. NeRF (3D): Real-World Scenes (LLFF)

We report additional qualitative results of learning NeRF
for the standard LLFF dataset in Fig. 9, where camera poses
are unknown. L2G-NeRF successfully recovers the 3D
scene with higher fidelity than baselines. Fig. 10 shows that
the recovered camera poses from L2G-NeRF agree more
with those estimated from Sf M methods than BARF.

C.3. NeRF (3D): Real-World Scenes (Ours)

We take one step further to experiment with images cap-
tured using an iPhone under challenging camera pose dis-
tribution. Fig. 11 and Fig. 13 indicate the advantage of
L2G-NeRF in registering images captured under large dis-
placements and sparse views, while baselines exhibit arti-
facts (Fig. 12 and Fig. 14) due to unreliable registration,
which is reflected in Table 6. Moreover, the difficulty
of registering from sparse views prevents Sf M from find-
ing accurate poses, which results in broken stripes on the
synthesis of reference NeRF trained under Sf M poses in
foods scene. This further demonstrates the effectiveness
of removing the requirement of pre-computed Sf M poses.
Fig. 11 and Fig. 13 show the largest displacements (hierar-
chical but adjacent camera poses) and the sparsest camera
setting (9 views) of L2G-NeRF to register images in these
scenes successfully, than which we can not handle a more
challenging camera pose distribution.

C.4. NeRF (3D): Real-World Scenes (Shiny)

To analyze the influence of reflective surfaces, We
present an example in Fig. 15 that models scenes [6] with
reflections from identity initialization (L2G-NeRF con-
verges, BARF fails in the guitars scene). Interestingly,
global alignment loss increases by 4 to 10 times w.r.t. other
datasets. This may be caused by inaccurate local registra-
tion in specular regions, and our convergence benefits from
the global registration constraint. Specific methods (e.g.,
[5]) could be employed to handle reflective surfaces better.
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