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A. Experimental Analysis
A.1. Ablation study for BTCV dataset

In the main paper, ablation studies are conducted on MACT dataset [6]. In the supplementary material, we further conduct
ablation studies on BTCV dataset [7] with 30% labeled images to show the effectiveness of each module in our method.
Similar results are obtained in MACT and BTCV datasets. Next, we follow the main paper to report the results in BTCV
dataset.

A.1.1 Effectiveness of each component

In this subsection, we conduct ablation studies to show the effectiveness of each component of MagicNet on BTCV dataset.
In Table 1, the first row indicates the mean-teacher baseline model [10], which our method is designed on. Compared to
the baseline, our MagicNet can yield good segmentation performance. Cross and In represent our cross- and within-image
partition-and-recovery, which increase the performance from 61.42% to 71.09% and 74.29%, respectively. This shows the
powerful ability with our specially-designed data augmentation method. Loc represents magic-cube location reasoning for
within-image branch. We can see from the table that based on our cross-image branch, adding relative locations of small-
cubes can achieve 73.72% in DSC, adding only within-image partition-and-recovery branch achieves 74.29%, and adding
both two branches leads to 74.80%. Finally, our proposed cube-wise pseudo label blending (short for Bld in Table 1) provides
significant improvement to 75.53%.

A.1.2 Design choices of partition and recovery

In this subsection, we discuss the design for cross-image partition-and-recovery branch: ① Should we maintain or scramble
the magic-cube relative locations when manipulating our cross-image magic-cube partition and recovery? The comparison
results are shown in the last two rows in Table 2. Scramble and Keep represent the partitioned small-cubes are randomly
mixed while ignoring their original locations or kept when mixing them across images. Results show that the relative locations
between multiple organs are important for CT multi-organ segmentation. ② Should our cross-image data augmentation be
operated on only unlabeled images (see U in Table 2) or both labeled and unlabeled images (see LU in Table 2)? The latter
obtains a much better performance compared to the former.

A.1.3 Design of cube-wise pseudo-label blending strategy

To obtain pseudo-labels for unlabeled data, we blend the output of within-image branch and the output of teacher model to
obtain the final pseudo-label for complementing local attributes. We compare our blending with two other methods, as shown
in Table 3. Three supervision schemes are compared for unlabeled images based on our framework. Teacher supervision
means the outputs of cross-image and within-image branch are both supervised by the pseudo-label from the teacher model.
Mutual supervision means the outputs of cross-image and within-image are mutually supervised. It can be seen that our
blending strategy works favorably for unlabeled data.
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Methods Cross In Loc Bld Avg. DSC Spl R.kid L.kid Gall Eso Liv Sto Aor IVC Veins Pan RG LG

Baseline (MT [10]) 61.42 79.89 77.56 78.08 38.31 58.99 92.26 48.73 88.61 79.36 52.73 28.42 54.16 21.30
Cross ✓ 71.09 89.13 80.83 81.24 51.95 55.09 93.97 64.94 90.16 84.71 69.95 60.58 58.29 43.28
Cross + In ✓ ✓ 74.29 89.80 84.74 85.88 56.69 62.19 93.85 66.16 90.42 84.51 71.33 64.14 58.80 57.24
Cross + Loc ✓ ✓ 73.72 88.05 83.14 84.15 62.67 63.34 93.09 66.55 90.63 82.58 68.89 60.79 55.81 58.70
Cross + In + Loc ✓ ✓ ✓ 74.80 90.64 85.76 86.49 61.36 63.02 94.93 67.38 90.51 82.46 70.90 63.95 56.80 58.15
Cross + In + Loc + Bld ✓ ✓ ✓ ✓ 75.53 91.42 84.64 86.19 62.86 62.49 93.89 72.87 90.70 83.52 70.07 64.94 60.88 57.48

Table 1. Ablation study (DSC, %) for the effectiveness of each component of MagicNet on BTCV dataset. Cross: cross-image partition-
and-recovery. In: Within-image partition-and-recovery. Bld: cube-wise pseudo-label blending. Loc: magic-cube location reasoning.
Note: Spl: spleen, R.Kid: right kidney, L.Kid: left kidney, Gall: gallbladder, Eso: esophagus, Liv: liver, Sto: stomach, Aor: aorta, IVC:
inferior vena cava, Veins: portal and splenic veins, Pan: pancreas, LG/RG: left/right adrenal glands.

① ② DSC NSD

scramble U 62.90 ± 4.63 63.03 ± 5.95
keep U 64.92 ± 5.53 64.61 ± 6.96

scramble LU 67.09 ± 4.74 67.56 ± 5.62
keep LU 71.09 ± 4.54 71.20 ± 5.91

Table 2. Ablation of design choices for cross-
image partition and recovery on BTCV dataset
(Question ① and ②, mean ± std of all cases).
Scramble/keep: ignore/keep original positions
when mixed. U: only for unlabeled data. LU: for
both labeled and unlabeled data. The last row is
ours.

DSC NSD

teacher sup. 69.81 ± 4.27 70.56 ± 4.69
mutual sup. 66.46 ± 5.30 67.97 ± 6.94

blending 75.53 ± 4.90 76.31 ± 6.30

Table 3. Comparison of different pseudo-
label supervision/blending strategies for
unlabeled data on BTCV dataset. Sup.:
supervision. Blending: our cube-wise
pseudo-label blending.

DSC NSD

CutMix [14] 68.83 ± 5.10 66.87 ± 7.50
CutOut [4] 69.54 ± 4.34 68.12 ± 5.87
MixUp [15] 68.59 ± 5.68 67.77 ± 7.44

Ours (2) 74.80 ± 4.84 75.09 ± 5.98
Ours (3) 75.53 ± 4.90 76.31 ± 6.30

Table 4. Comparison of different
data augmentation methods on BTCV
dataset, where we try different CutMix
and CutOut sizes, and choose the best
results. For MagicNet, we compare dif-
ferent N values in (·).

A.1.4 Comparison with interpolated-based methods

As shown in Table 4, our augmentation method outperforms other methods such as CutMix, CutOut and MixUp.

A.1.5 Different number (N ) of small-cubes

We study the impact of different numbers of small-cubes N , as shown in Table 4. Slightly better performance is achieved
when N = 3. When N = 4, the size of the small cube does not match the condition for VNet. Thus, we only compare the
results given N = 2 and N = 3.

B. Other Analysis
B.1. Visualization Results

We visualize some qualitative results from BTCV dataset [7] in Fig. 1 for different semi-supervised medical image
segmentation methods, including MT [10], UA-MT [13], CPS [3], SS-Net [12], our MagicNet and ground-truth. We can
observe that our method achieves more accurate segmentation results compared with previous methods.

B.2. Pseudo-label Quality

In this subsection, we validate the effectiveness of MagicNet for refining the quality of pseudo-label. To this end, we cal-
culate DSC scores between pseudo-masks and ground-truth of unlabeled training images for our method and other methods.
In Fig. 2, we show DSCs of each organ and Avg. DSC of unlabeled training set of BTCV dataset. It is observed that our
method can well improve DSC performance for each organ-class, especially for the small organ-class, e.g., esophagus, veins,
right/left adrenal glands, pancreas and gallbladder.

B.3. Comparison with Rubik-Cube Style Self-Supervised Learning

To show that our MagicNet has a better ability in leveraging unlabeled data than state-of-the-art self-supervised learning
methods, we compare MagicNet with Swin UNETR [8] and a rubik-cube based method Rubik++ [9]. We use the Total-
Segmentator dataset [11] (with 1,204 CT scans) as unlabeled training set, and pick 18 images in BTCV dataset [7] as labeled
training set and treat the remaining 12 images as the testing set (18 and 12 images are chosen following [1,2,5]). In the above
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Figure 1. Qualitative visualizations of the proposed MagicNet and state-of-the-art methods on BTCV dataset.

Figure 2. DSC comparison for multi-organ categories of unlabeled data among different approaches on BTCV dataset.

experimental setting, MagicNet, Swin UNETR [8], Rubik++ [9] achieve 79.42, 76.91, 75.90 in DSC with the backbone VNet,
respectively. This shows the superiority of our method.
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