
Supplementary Materials for “MammalNet: A Large-scale Video Benchmark
for Mammal Recognition and Behavior Understanding”

In the supplementary material, we provide: 1) more details for training the classification and detection models, 2) more
analysis for the comparison of separately recognizing animal and behavior vs. their joint recognition, 3) the complete version of
our mammal taxonomy, 4) the demonstration of compositional low-shot animal and behavior recognition, 5) the demonstration
of the long-tail distribution of animals, behaviors and their compositions, 6) the confusion matrix for animal and behavior
prediction, 7) the visualization of our behavior localization interface.

1. Training Details
1.1. Training Details for Animal and Behavior Classification

We train all the recognition models with their officially released code. Specifically, for the configuration of training I3D [1],
C3D [8], SlowFast [2] models, we use the base learning rate 0.1, cosine decay learning rate scheduler, 196 training epochs, 34
warmup epochs and the batch size 256. We sample 16 frames per clip with the sampling rate of 24. For the configuration of
training MViT v2 [5] model, we apply the base learning 0.0001, cosine decay learning rate scheduler, 200 training epochs, 30
warmup epochs, and the batch size 256. We sample 16 frames per clip with the sampling rate of 16.

1.2. Training Details for Behavior Detection

Feature extraction. We firstly extract the frames from each video with 25 FPS and also extract the optical flow with
TV-L1 [3, 6] algorithm. After that, we finetune an I3D [1] model, that has been pretrained on Kinetics 400 [4] dataset, on our
MammalNet, and then use it to generate the features for each RGB and optical flow frame. Since each video has variable
duration, we perform the uniform interpolation to generate 100 fixed-length features for each video. Finally, we concatenate
the RGB and optical flow features into a 2048-dimensional embedding as the model input.

Model training. We train all the detection models with their officially released code and the default configurations. For
training ActionFormer [10] model, we apply the base learning rate 0.001, cosine decay learning rate scheduler, 30 training

Animal Classification Behavior Classification
Baselines Many Medium Few All Many Medium Few All

12 28 133 173 4 4 4 12

SlowFast [2] (joint loss) 58.3 43.1 16.6 24.5 45.1 32.7 14.8 30.9
SlowFast (separate losses) 57.0 42.4 20.2 26.9 44.3 32.0 15.2 30.4

C3D [8] (joint loss) 58.3 45.4 19.1 26.8 44.6 36.0 15.9 32.2
C3D (separate losses) 58.1 46.7 21.6 28.8 42.4 34.0 15.3 30.6

I3D [1] (joint loss) 58.6 42.9 16.9 24.8 46.3 35.0 14.8 32.1
I3D (separate losses) 57.3 42.4 16.6 24.3 43.8 29.3 12.3 28.4

MViT V2 [5] (joint loss) 66.7 56.0 23.4 32.5 50.9 42.4 20.0 37.8
MViT V2 (separate losses) 67.1 56.2 24.2 33.2 50.3 38.7 16.0 35.0

Table 1. Per-class Top-1 accuracy for animal, behavior and their compositional prediction. All the models are initialized with the weights
pretrained on Kinetics 400 dataset [4].
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Figure 1. Demonstration of compositional zeroshot animal and behavior recognition.

epochs, 5 warmup epochs, and the batch size 16. For training TAGS [7] model, we apply the base learning rate of 0.0004, step
decay learning rate scheduler, 20 training epochs, and the batch size 200. For training CoLA [9] model, we apply the base
learning rate of 0.0001, 50 training epochs, and the batch size 256.

2. Separate Animal and Behavior Prediction vs. Joint Prediction
We also train all the baseline models with just the animal classification loss for animal recognition and just the behavior

classification loss for behavior recognition. We compute the per-class top-1 accuracy and summarize all the results in Table
1. Comparing joint vs. separate training, we find that joint training is able to improve the behavior recognition performance
by improving ∼2.2 per-class accuracy in average of all the baselines, indicating that recognizing the animal category can
help improve the behavior understanding. On the other hand, performing the animal recognition alone is better than the joint
training together, improving ∼1.5 top-1 accuracy on average for all the baselines.

3. Full animal taxonomy
We demonstrate the full animal taxonomy in the Fig. 11. The full taxonomy consists of different layers such as order,

family, genus, sub-family and tribe. In our MammalNet, we treat the genus, sub-family and tribe from the lowest level as the
animal categories during the classification. For some genera that are very hard to distinguish and also hard to find sufficient
number of videos from YouTube, such as African elephant and Asian elephant, we group them together as an union of genera.
We also expand the searching keywords with more general names such as elephant in order to find more relevant videos.
Additionally, bovidae family has the sub-layers of tribe and sub-family instead of genus in scientific mammal taxonomy, hence
we classify the animals in the tribe and sub-family level. Finally, we have:
17 orders: e.g. artiodactyla, primates, etc.
69 families: e.g. bovidae, cervidae, etc.
162 genera: e.g. antilocapra, felis, etc.
5 tribes: e.g. aepycerotinae, bovini, etc.
6 sub-families: e.g. alcelaphinae, caprini, etc.

4. Illustration of compositional low-shot animal and behavior recognition
To better demonstrate the compositional low-shot animal and behavior recognition, we visualize one zero-shot example in

Fig. 1. During the training, the model has seen Caracal performing behaviors such as groom and eat, but it has never seen the
hunt behavior. However, it has seen the hunt behavior performed by other animals (e.g. lynx and lion), and the target is to
evaluate if the model can also successfully predict the Caracal hunt.
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Figure 2. The number of trimmed videos per each mammal category. The animal with the frequency > 300 is grouped into many. The
animal with the frequency ≤ 300 and > 100 is grouped into medium. The animal with the frequency ≤ 100 is grouped into few. We rank
the animals based on their frequency.
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Figure 3. The number of trimmed videos per each behavior. The behavior with the frequency > 1,500 is grouped into many. The
behavior with the frequency ≤ 1,500 and > 500 is grouped into medium. The behavior with the frequency ≤ 500 is grouped into few. We
rank the behavior based on their frequency.
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Figure 4. The number of trimmed videos per each composition of animal category and behavior. The composition with the frequency >
70 is grouped into many. The composition with the frequency ≤ 70 and > 20 is grouped into medium. The composition with the frequency
≤ 20 is grouped into few. We rank the composition based on their frequency.

5. The long-tail distribution of animal, behavior and their composition
Our data has the skewed distribution in terms of the animal category, behavior and also their composition. To get better

insights, we split the categories into many, medium and few groups based on the their frequency. We show the animal
distribution in Fig. 2, the behavior distribution in Fig. 3 and their compositional distribution in Fig. 4.
Animal split: the animals with the frequency > 300 are grouped into many. The animals with the frequency ≤ 300 and > 100
are grouped into medium. The animals with the frequency ≤ 100 are grouped into few.
Behavior split: The behaviors with the frequency > 1,500 are grouped into many. The behaviors with the frequency ≤ 1,500
and > 500 are grouped into medium. The behaviors with the frequency ≤ 500 are grouped into few.
Composition split: The compositions with the frequency > 70 are grouped into many. The compositions with the frequency
≤ 70 and > 20 are grouped into medium. The compositions with the frequency ≤ 20 are grouped into few.

6. Confusion Matrix for Behavior Prediction
Confusion matrices for predicting animal and behavior. We show the confusion matrix for behavior recognition in Fig. 5.
We observe that more frequent behaviors, such as eat food and fight, have less ambiguity, while less frequent behaviors, such
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Figure 5. Confusion matrix visualization for behavior recognition.

as vomit and defecate, are often misclassified with, e.g., eat food. Also, some behaviors can mistakenly be predicted as other
similar behavior: for example, the hunt behavior is often mistakenly predicted as fight. We show the confusion matrix for
animal recognition in the supplement.

7. Confusion Matrix for Animal Prediction
We compute the confusion matrix for the animal prediction. We demonstrate its visualization in the Fig. 6. Through this

confusion matrix, we found that some animals are easily mis-classified into other similar-appearance animals. For example,
lynx is often mis-classified into panthera. the caracal is often mis-classified into panthera as well. muntiacus is often
mis-classififed into caprini and deer. However, for some animals such as giraffe and elephant, they are much less mis-classified
due to their unique body shape compared to other animals.

8. Annotation Interface Demonstration
We demonstrate the final animal behavior verification interface in Fig. 8 and also its instruction description in Fig. 7.

Additionally, we also demonstrate the behavior localization interface in Fig. 10 and also the instruction description in Fig. 9.
We assign each video to 5 different Amazon Mechanical Turk (AMT) workers and ask them to temporally localize the video
range which exists the animal behavior. Each worker is required to annotate all the temporal ranges in which appears the target
animal behavior. Before each worker started to participate in the annotation, they need to be evaluated if they have clearly
understand our task with 20 multi-choice questions, and they can only work on our behavior localization task only when they
can correctly answer ≥90% questions.
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Figure 6. Confusion matrix for animal prediction. We visualize the confusion matrix for predicting the animals in our testing data.



Figure 7. The instruction for animal and behavior verification annotation

Figure 8. The interface for animal behavior verification.



Figure 9. The instruction for behavior localization

Figure 10. The animal behavior localization interface
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Figure 11. The full taxonomy of MammalNet. We show 17 orders, 69 families, 162 genera, 5 tribes and 6 sub-families in this full animal
taxonomy.
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