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1. Future work
In this work, the factor set is defined manually, which

may not capture all causes of the domain shift. In future
work, we are going to discover latent factors so as to analyze
the domain shift more flexibly and comprehensively.

2. Ablation Study of Eq.8
We add an ablation study by removing Eq.8 from our

method (“Ours w/o Eq.8”). From the results shown in Ta-
ble 1, “Ours w/o Eq.8” performs worse than “Ours”. The
reason is that Eq.8 restricts each feature mapping to address
a specific domain shift, facilitating the reduction of com-
bined domain shift in Eq.7.

Table 1. Ablation studies (%) of Eq.8 on PACS with ResNet-18.

Method Artpaint Cartoon Sketch Photo Avg
Ours w/o Eq.8 74.37 75.65 59.71 55.10 66.21
Ours 77.13 80.14 62.55 59.60 69.86

3. Network Architecture.
For the Digits dataset, we use ConvNet [9] as the back-

bone [11, 17]. Each feature mapping is built with two
FC layers (512→1024) with ReLU following the first FC
layer. For the CIFAR-10 dataset, we use WRN [22]
with 16 layers and widen factor 4 as the backbone [11,
17]. Each feature mapping is built with four FC lay-
ers (512→512→512→256) with ReLU following the first
three FC layer. For the PACS dataset, we use ResNet-
18 [7] pretrained on ImageNet as the backbone [6,
20]. Each feature mapping is built with four FC layers
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Table 2. Leave-one-domain-out results (%) on PACS with ResNet-
50. One domain (name in column) is used as the target domain and
the other three domains are used as source domains.

Method Artpaint Cartoon Photo Sketch Avg
MetaReg [1] 87.20 79.20 97.60 70.30 83.60
MASF [5] 82.89 80.49 95.01 72.29 82.67
EISNet [19] 86.64 81.53 97.11 78.07 85.84
RSC [8] 87.89 82.16 97.92 83.35 87.83
FACT [21] 89.63 81.77 96.75 84.46 88.15
MatchDG [14] 85.61 82.12 97.94 78.76 86.11
CSG-ind [12] 88.60 84.60 97.80 81.10 88.03
CIRL [13] 90.67 84.30 97.84 87.68 90.12
Ours 90.58 85.11 97.60 88.62 90.48

(1024→1024→1024→2048) with ReLU following the first
three fc layer. For all tasks, the effect-to-weight network is
built with two FC layers (|Y|→10×|Y|→1) with ReLU af-
ter the first FC layer, where |Y| is the number of categories.

4. Results on Multiple Domain Generalization

To further evaluate the effectiveness of our method, we
also conduct experiments of multi-source domain gener-
alization with ResNet50 as backbone on PACS. We em-
ploy the leave-one-domain-out protocol following exist-
ing multi-source domain generalization [13, 21]. We com-
pare our method with most related methods that introduces
causal inference into generalization (MatchDG [14], CSG-
ind [12], CIRL [13]), and existing popular domain gener-
alization methods (MetaReg [1], GUD [18], Epi-FCR [10],
MASF [5], JiGen [2], DMG [3], DDAIG [24], CSD [16],
L2A-OT [25], EISNet [19], RSC [8], ME-ADA [23],
MMLD [15], L2D [20], FACT [21]).

Table 2 shows the leave-one-domain-out results on the
PACS dataset with ResNet-50 as backbone. From the re-
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Figure 1. Feature visualization on the PACS dataset with ResNet-18 as backbone. “△”, “ × ”, “✩”, and “ ◦ ” denote the features of the
source domain (Artpaint) and three target domains (Cartoon, Sketch, Photo), respectively. Different colors denote different categories as
shown in the legend.

sults, it is noteworthy that our method achieves the state-of-
the-art results in terms of the overall metric “Avg” although
we not utilize the domain labels during training. In par-
ticular, when Cartoon or Sketch are used as the target do-
main, the domain shift is larger than other tasks due to the
totally different styles of Cartoon and the highly abstracted
shapes of Sketch. In these challenging tasks, our method not
only beats all popular domain generalization methods but
also surpasses the methods of introducing causal inference
(MatchDG [14], CSG-ind [12], CIRL [13]), clearly show-
ing the advantages of analyzing the causes of the domain
shift by causal inference.

5. Feature Visualization

In Figure 1, we visualize the data distributions of the
learned features by “Base”, “DT”, “DTA” and our method
on the PACS dataset with Artpaint as the source domain,
where ResNet-18 is used as backbone. For clarity, we only
show the first five categories from both the source and un-

seen target domains using t-SNE embeddings [4]. It is note-
worthy to observe that comparing with this three variants of
our method, our method aligns the source features with the
target features of unseen target domains well, further ver-
ifying the superiority of the new simulate-analyze-reduce
paradigm.
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