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A. Proof of Eq. (5)
In this section, we prove Eq. (5) with the terminologies maintained consistent with Sec. 3. We start to prove when r = 0.5

(i.e., two clean images within a single group). Denote X1,X2 as two random variables representing two input images, and
M as the random mask, which can be considered as a constant here since it is independently generated with X1 and X2.
Then, according to Eq. (1), the mixed input can be represented as,

σmix({X1,X2},M) = 1(M = 1)X1 + 1(M = 2)X2, (A1)

while the MAE input can be represented as,

σMAE(X1,M) = {X1,l|Ml = 1} = 1(M = 1)X1 + 1(M = 2)
−→
0 . (A2)

Therefore, given X1 as the reconstruction target, we can represent the mutual information (MI) between the mixed input and
the reconstruction target X1 as,

I(σmix({X1,X2},M);X1) = I(1(M = 1)X1 + 1(M = 2)X2;X1)

= H(X1)−H(X1|1(M = 1)X1 + 1(M = 2)X2)

= H(X1)−H(X1|1(M = 1)X1 + 1(M = 2)
−→
0 + 1(M = 1)

−→
0 + 1(M = 2)X2)

= H(X1)−H(X1|1(M = 1)X1 + 1(M = 2)
−→
0 ,1(M = 1)

−→
0 + 1(M = 2)X2)

≥ H(X1)−H(X1|1(M = 1)X1 + 1(M = 2)
−→
0 )

= I(σMAE(X1,M);X1),
(A3)

where H(·) is the entropy. The conclusion above also holds when X2 is considered as the reconstruction target symmetrically.
Note that although independent in the data space, X1 and X2 are not independent in the feature space, because the global

self-attention would introduce inevitable information leakage from X2 to X1, which would be enhanced for “relevant” X2

(e.g., the green cucumber in Fig. 3), while restrained for “irrelevant” ones (e.g., the blue sky) by assigning different attention
weights. As shown in Fig. 6, the TopK(·) sampling accuracy converges to around 80%, suggesting that the information
leakage does exist in practice. Therefore, the independence is affected, and the equality in Eq. (A3) does not hold.

For r ∈ (0, 0.5), there are more than two images within a single group {X1,X2, ...,X1/r}. Considering X1 as the
reconstruction target, we can first mix all images except X1 to generate a pseudo X̂2 as,

X̂2 = σmix({
−→
0 ,X2,X3, ...,X1/r},M) = 1(M = 1)

−→
0 +

1/r∑
i=2

1(M = i)Xi, (A4)

which is then mixed with X1 following Eq. (A1). Therefore, the conclusion in Eq. (A3) can still be satisfied.
As discussed above, the usage of the global self-attention in ViT [8] is another indispensable factor to achieve the MI

increasement in Eq. (A3). Therefore, in this paper, we propose the homologous attention to replace the global self-attention
together with the homologous contrastive loss as verification for our MixedAE.



config value
optimizer AdamW [27]
base learning rate 7.5e−5

weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.95
batch size 4096 (B), 2048 (L)
learning rate schedule cosine decay [26]
warmup epochs 40
augmentation RandomResizedCrop
reconstruction target normalized pixels [13]

Table A1. Pre-training settings.

config value
optimizer AdamW
base learning rate 5e−4 (B), 1e−3 (L)
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999
batch size 1024 (B), 512 (L)
learning rate schedule cosine decay
warmup epochs 5
training epochs 100 (B), 50 (L)
augmentation RandAug (9, 0.5)
label smoothing [31] 0.1
mixup [37] 0.8
cutmix [36] 1.0
drop path [16] 0.1

Table A2. Fully fine-tuning settings.

B. More Implementation Details
Pre-training. The default settings are provided in Tab. A1. We use xavier uniform [11] to initialize all Transformer layers,
following the official code of ViT [8]. Normalized pixels [13] are utilized as the reconstruction target, and the mask patch
size is set to be 32 × 32, following [22, 35]. In practice, we utilize the sine-cosine encodings [32] for segment embeddings,
which is added to the input of each Transformer layer following [25]. If no otherwise specified, the compose mixing mode is
by default adopted to generate a single mixed sample for each image group.

ImageNet classification. The default settings are provided in Tab. A2. We mainly adopt the fully fine-tuning transfer
setting to fine-tune the parameters of the backbone and the classification head simultaneously. We utilize the layer-wise
learning rate decay strategy [6] following [1]. In practice, we sweep the decay ratio in {0.65, 0.7, 0.75} following [22, 39].

ADE20K semantic segmentation. We use UperNet [34] as the segmentor following BEiT [1]. The input resolution is
512 × 512, and the batch size is set to be 16. The learning rate is set to be 3e−4 with the layer-wise learning rate decay
ratio as 0.65 for ViT-Base and 0.75 for ViT-Large. We conduct fine-tuning for 160K iterations, and evaluate the performance
without the multi-scale augmentation.

COCO object detection and instance segmentation. We utilize the Cascade Mask R-CNN [3, 14] following iBOT [39].
Multi-scale training is adopted with the shorted side randomly resized between 480 and 800 while the longer side no larger
than 1333. The batch size is 16, the initial learning rate is 1e−4, and the layer-wise learning rate decay ratio is set to be 0.75.
We adopt the standard 1× schedule to train for 12 epochs, and decrease the learning rate by 10× at epoch 9 and 11.

Downstream classification. We mainly follow the setups in [23, 24] to evaluate the transfer performance on 11 down-
stream classification datasets, including both the fine-grained datasets (e.g., Aircraft [28], Cars [17], Flowers [29], Food [2],
Pets [30] and SUN397 [33]), and the coarse-grained ones (e.g., Caltech101 [19], CIFAR10 [18], CIFAR100 [18], DTD [5]
and VOC2007 [10]). Specifically, we adopt a linear classification head upon the pre-trained ViT backbone and fully fine-tune
the whole model simultaneously for 5000 iterations. The SGD optimizer and the cosine learning rate schedule are adopted.
We grid search the optimal learning rate among {1e−3, 3e−3, 1e−2, 3e−2}, and set the weight decay to be 0.

C. More Experiments
Scaling property of MixedAE. We further build MixedAE with the standard ViT-Large [8] as the backbone architecture,
and pre-train for 1600 epochs on ImageNet-1K [7] following the same optimization recipe with ViT-Base as in Appendix B.
As demonstrated in Tab. A3, MixedAE still outperforms MAE consistently with ViT-Large, especially on downstream dense
perception tasks [12, 20, 21, 38] thanks to the object-aware pre-training, revealing the scalability of our proposed MixedAE.



Method Pre-train Pre-train ImageNet ADE20K COCO
Epochs GPU-days Top-1 Acc. mIoU APbb APbb

50 APbb
75 APmk APmk

50 APmk
75

iBOT [39] 1000∗ 285.0 85.0 52.2 49.9 69.5 54.1 42.9 66.5 45.9
MAE [13] 1600 151.1 85.9 53.6 54.0 72.6 59.0 46.3 69.6 50.4
MixedAE 1500 159.7 86.0 53.8 54.5 73.4 59.3 46.9 70.4 50.9
MixedAE 1600 170.4 86.2+0.3 54.0+0.4 54.6+0.6 73.5+0.9 59.4+0.4 47.1+0.8 70.7+1.1 51.0+0.6

Table A3. Transfer performance comparison with ViT-Large [8]. 1) Scalability: our MixedAE outperforms MAE consistently even
with ViT-Large. 2) Efficiency: MixedAE achieves a better trade-off between the computational overhead and the transfer performance
regardless of the architecture size. ∗: effective epochs following iBOT [39].

Masked SA acc mIoU
MAE 82.7 46.1
Naı̈ve 82.4 45.0

Mixing ✓ 82.6 45.9

(a) Main cause of performance degradation
is indeed the information leakage brought by
naı̈ve mixing without homologous recognition.

Lrecon LHomoCon acc mIoU
✓ 82.4 45.0

✓ 7.8 8.3
✓ ✓ 82.7 46.4

(b) Functionality of the LHomoCon. When
adopting LHomoCon alone, MixedAE cannot
even achieve reasonable transfer performance.

Mixing SE acc mIoU
✓ 82.2 44.9

✓ 81.1 42.9
✓ ✓ 82.7 46.4

(c) Necessity of the mixing and segment em-
beddings. The best transfer performance is
achieved when both are adopted.

Table A4. More MixedAE ablation experiments with ViT-B/16. Default settings are marked in gray .

Moreover, we further report the performance of the 1500-epoch pre-trained MixedAE with ViT-Large to maintain similar
computational overhead with MAE in Tab. A3. MixedAE still obtains consistent improvements over MAE, while outper-
forming iBOT with a 1.8× acceleration, suggesting that MixedAE can achieve a better trade-off between the computational
overhead and the transfer performance regardless of the architecture size.

Ablation settings in Tab. 3. We conduct the ablation of new components based on previous results. Starting from the naı̈ve
baseline in Sec. 3.1, we first ablate the mixing ratio r in Tab. 3(a). Accordingly, we fix r = 0.25 to explore the position and
positives of the homologous contrastive in Tab. 3(b)(c). Similarly, we ablate homologous attention in Tab. 3(d)(e) based on
results of Tab. 3(c), and finally summarize all components in Tab. 3(f).

Main cause of performance degradation of naı̈ve mixing. To verify that the information leakage brought by the mutual
information increasement, as proved in Appendix A, is indeed the main cause of performance degradation of the naı̈ve
mixing baseline introduced in Sec. 3.1 instead of the optimization difficulty, we further build a mixing baseline by: 1)
applying the masked self-attention to perform self-attention only within homologous patches to prevent information leakage
without homologous recognition (i.e., neither homologous TopK(·) attention nor homologous contrastive loss); 2) adopting
exactly the same optimization recipe with MAE. As demonstrated in Tab. A4a, the model achieves 82.6% accuracy and 45.9
mIoU, comparably with MAE, suggesting that the information leakage is definitely the culprit here.

Functionality of the LHomoCon. To verify that the homologous contrastive loss performs more like a regularization term
instead of an individual self-supervision as in [9, 39], we further pre-train a MixedAE with LHomoCon only following the
settings in Sec. 4.4. As demonstrated in Tab. A4b, MixedAE performs well when the reconstruction loss Lrecon is utilized
only or together with the homologous contrastive loss LHomoCon. However, when adopting LHomoCon only, MixedAE
cannot even achieve reasonable transfer performance, suggesting that LHomoCon cannot work alone without Lrecon.

Necessity of mixing. To verify to necessity of adopting mixing augmentation in our MixedAE, we extend MAE with the
homologous contrastive LHomoCon by applying Eq. (7) to patches across different images in groups of 4 for a fair comparison
with MixedAE, which achieves 81.1% accuracy and 42.9 mIoU as demonstrated in Tab. A4c (2nd & 3rd rows), significantly
worse than our default MixedAE, revealing the necessity of using mixing augmentation.

Necessity of segment embeddings. As shown in Tab. A4c (1st & 3rd rows), we build a MixedAE without segment embed-
dings and achieve 82.2% accuracy and 44.9 mIoU, significantly worse than our default MixedAE, suggesting the importance
of adopting segment embeddings to provide necessary information for homologous recognition.



D. More Analysis
Exploration for other augmentations. As discussed in Sec. 3.1, based on mixing, we observe that common augmentation
strategies will increase mutual information (MI) between the model input and the reconstruction target, suggesting that data
augmentations like random augmentation and color jittering might not be suitable or require specific designs for MIM, which
will be explored in the future work.

Limitations. Although demonstrating significant performance, we notice that the TopK(·) sampling accuracy in homolo-
gous attention still cannot achieve 100% as shown in Fig. 6, for which there exist several potential reasons accounting: 1) The
background patches might be included during random cropping inevitably, which are difficult for attention-based methods to
recognize. 2) There is still further improvement space for MixedAE. For example, more strict verification than homologous
contrastive loss is an appealing future work direction.

E. More Visualizations
We provide more visualizations of the attention mapes learnt by MAE and MixedAE on images from ImageNet-1K [7],

ADE20K [38] and Microsoft COCO [21] datasets in Fig. A1. As demonstrated, our MixedAE can generate more reasonable
and discriminative attention maps, revealing the effectiveness of MixedAE to conduct object-aware pre-training without any
specifically designed modules (e.g., K-means [4] and object discovery network [15]).
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Figure A1. More visualizations of attention maps from ImageNet-1K (1-3 rows), ADE20K (4-6 rows) and COCO (7-12 rows).
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