
MobileNeRF: Exploiting the Polygon Rasterization Pipeline
for Efficient Neural Field Rendering on Mobile Architectures

(Supplementary Material)

A. More results

Check out our project page: https://mobile-nerf.github.io

B. Scene editing

Our representation is a textured mesh with baked light-
ing, and thus can be used in any application that combines,
renders, or manipulates such meshes. Figure 9 (a) shows
a simple example where meshes learned from four differ-
ent sets of photos are composited into a single scene. The
scene, rendered in 1920×1080 resolution without super-
sampling, runs at 150 FPS on the gaming laptop, and con-
sumes 1.5 GB of GPU memory. Similarly Figure 9 (b)(c)
show scenes where some parts or objects are edited or re-
moved by manipulating the triangle meshes of the scenes in
a 3D modeling software. The resulting renders do not ac-
count for differences in illumination between the captured
photos or indirect illumination between different meshes.
However, it suggests an easy way to create “photorealistic-
looking” scenes from a library of objects captured using
photos rather than painstaking 3D modeling.

https://youtu.be/kVy2W6afuyk shows three examples
where we manipulate the learned NeRF objects interac-
tively in real-time. We also highlight how easy it is to imple-
ment these operations with our mesh representation. In con-
trast, implementing those with classic NeRF is non-trivial.

In the first example, we render all 8 objects learned from
the synthetic scenes at the same time, and we move the ob-
jects by using mouse to drag the objects. This is imple-
mented by a single line of code with the DragControls class
provided in the threejs library. DragControls is designed for
manipulating meshes, which suits our needs exactly since
our objects are meshes. We also cast real-time shadow of
the objects by applying shadow mapping. This is imple-
mented by having a directional light, an ambient light, and
a plane below the objects to receive shadows. The drag con-
trol and the real-time shadow are also used in the following
examples.

In the second example, we interactively deform the
learned chair object to create new variations of chairs. To
implement the deformation, we only need to deform the ver-
tex positions of the meshes, and this is achieved by adding
vertex deformation code in the vertex shader. Specifi-
cally, we implemented three operations: moving the chair
up/down will lengthen or shorten its legs, moving the chair
left/right will adjust its width, and moving the chair for-
ward/backward will adjust the skew of its back.

In the third example, we render 9 ficus objects, which
are considered “NeRF” objects, and a blue ball, which is a
classic object with standard material used in classic render-
ing. We again change the vertex shader to make the leaves
of the plants to be repelled by the blue ball.

C. Training

Our training stages are formalized as follows. In the first
training stage, we optimize

argmin
V,θA,θF ,θH

LC + wdLdist + Lv (18)

and

argmin
G

Lbnd
G + wg1Lsparse

G + wg2Lsmooth
G , (19)

where wg1 = wg2 = 10−5. wd is set to 0.0 for synthetic
360◦ scenes, 0.01 for forward-facing scenes, and 0.001 for
unbounded 360◦ scenes. In the second training stage, we
optimize

argmin
V,θA,θF ,θH

Lstage2
C + wdLdist + Lv (20)

and Eq. 19. When the loss converges, we fix the weights of
V , θA, and G and optimize

argmin
θF ,θH

Lbin
C . (21)

D. Network architectures

We adopt the MLP designed in NeRF as the network for
both A and F . We increase the hidden layer sizes from 256
to 384, since A and F are not used during inference, so we
can afford more time on training. The small MLP H is the
same as the small MLP used in SNeRG, with two hidden
layers, each consisting 16 neurons.

E. More details about texture images

Since the features to be stored are 8-dimensional, we use
two PNG images to store them. Each PNG image has 4
channels, therefore two PNG images have a total of 8 chan-
nels to store 8-d features. To avoid having an extra image
to store the binary alpha (opacity) channel, we squeeze the
alpha channel into the first feature channel, so that the alpha
is one when the first feature channel is non-zero, and zero

https://mobile-nerf.github.io
https://youtu.be/kVy2W6afuyk


when the channel is zero. Since phones have a hardware
constraint that the texture size must be a power of 2 and at
most 4096 × 4096, we split the large texture images into
multiple 4096× 4096 texture images.

F. Quadrature details

The regular-grid mesh M provides an efficient way for
computing intersections between a ray and the mesh of size
P × P × P in O(P ) complexity, as shown in Figure 5.

First, we compute the set of voxels that are intersected
by the ray. This involves solving 3P ray-plane intersections
and using those intersection points to obtain at most 3P in-
tersected voxels. This step is shown in Figure 5a and Eq. 7.

Then, we use the acceleration grid G ∈ RP×P×P to
prune voxels that are unlikely to contain geometry, with re-
spect to a threshold τG = 0.1. This step is shown in Fig-
ure 5b and Eq. 8.

Finally, we compute intersections between the ray and
the faces of M that are incident to the voxel’s vertex to
obtain the final set of quadrature points. This step is shown
in Figure 5c and Eq. 9.

During the first quarter of the training iterations, G may
not be accurate, therefore we will keep all 3P intersected
voxels regardless of τG , and keep 3P intersection points
(Recall that if the mesh grid is a regular grid, there are at
most 3P intersections). Then in the next quarter, we will
use G to remove empty voxels and keep at most 3P/2 non-
empty voxels and 3P/2 intersection points that are closest
to the camera. In the rest of the training, we will keep 3P/4.
We also double the training batch size each time we halve
the number of intersections.

For the concentric boxes in unbounded 360◦ scenes, we
will compute their intersections and keep all of them.

G. Initial meshes

In this section we detail the polygonal meshes used
for synthetic 360◦, forward-facing, and unbounded 360◦

scenes, see Fig. 4 for 2D illustrations.
We will call the coordinate system of a regular mesh grid

in a unit cube centered at the origin as the normalized co-
ordinates, and we can apply transformations to obtain the
grids in the world coordinates for different types of scenes.
In the following, we will denote points in the normalized
coordinates as p ∈ [−0.5, 0.5] and points in the world co-
ordinates as p′.

For synthetic 360◦ scenes, we apply scaling to the grid
to put the object inside the grid.

p′ = wp, (22)

where w = 2.4 or 3, depending on the size of the object.

We use a grid size of P = 128.
In forward-facing scenes, we apply transformation to

concentrate more voxels close to the camera, as shown in
Fig. 4 (b). 

p′
z = exp(w(pz + 0.5)),

p′
x = upxp

′
z,

p′
y = vpyp

′
z,

(23)

where w is set to a value so that p′
z = 25 when pz = 0.5;

u = v = 1.75. We use a grid size of P = 128.
In unbounded 360◦ scenes, we assume the cameras are

inside the unit cube in the normalized coordinates, there-
fore we do not apply transformations. However, to model
the surrounding environments, we add a set of L + 1 con-
centric boxes around the regular grid. The boxes have fixed
positions and geometry, and their distances to the center are
given by

di = (exp(
wi

L
) + w − 1)/2w, (24)

where i ranges from 0 to L. w is set to a value so that
dL = 8, therefore di ∈ [0.5, 8]. We use a grid size of
P = 128, and L = 64.

H. Per-Scene metrics

We provide per-scene breakdown for the quality met-
rics in Table 8 9 10 12 13 14 16 17 18. We provide per-
scene breakdown for rendering speed and storage cost in
Table 11 15 19, where OOM (out-of-memory) indicates the
device cannot run a testing scene due to GPU memory is-
sues, and ICP (incompatible) indicates the device cannot
run the method due to compatibility issues. The GPU mem-
ory and disk storage were tested on the Desktop.

For Surface Pro 6, Gaming laptop, and Desktop, we dis-
able frame-rate limiting from vertical synchronization by
starting the Chrome browser with the following arguments:

--disable-frame-rate-limit
--disable-gpu-vsync

However, for phones and Chromebook, we did not find a
way to easily disable vertical synchronization, therefore the
FPS is capped at 60.

The models in our online demo (https://mobile-
nerf.github.io) are the same as the ones used in our pa-
per. The rendered images of our method are nearly identical
whether they are rendered in Python (for computing quanti-
tative metrics) or web browsers, see Figure 10. If one over-
lays the difference image and the rendered image, one can
find that the few very different pixels are all on the bound-
ary of a part, which indicates that they are likely caused by
precision errors in rasterization.

https://mobile-nerf.github.io
https://mobile-nerf.github.io


Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean
NeRF [33] 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.00
JAXNeRF [14] 33.88 25.08 30.51 36.91 33.24 30.03 34.52 29.07 31.65
SNeRG [21] 33.24 24.57 29.32 34.33 33.82 27.21 32.60 27.97 30.38
Ours 34.09 25.02 30.20 35.46 34.18 26.72 32.48 29.06 30.90

Table 8. PSNR↑ on Synthetic 360◦ scenes.

Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean
NeRF [33] 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856 0.947
JAXNeRF [14] 0.974 0.927 0.967 0.979 0.968 0.952 0.987 0.865 0.952
SNeRG [21] 0.975 0.929 0.967 0.971 0.973 0.938 0.982 0.865 0.950
Ours 0.978 0.927 0.965 0.973 0.975 0.913 0.979 0.867 0.947

Table 9. SSIM↑ on Synthetic 360◦ scenes.

Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean
NeRF [33] 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206 0.081
JAXNeRF [14] 0.027 0.070 0.033 0.030 0.030 0.048 0.013 0.156 0.051
SNeRG [21] 0.025 0.061 0.028 0.043 0.022 0.052 0.016 0.156 0.050
Ours 0.025 0.077 0.048 0.050 0.025 0.092 0.032 0.145 0.062

Table 10. LPIPS↓ on Synthetic 360◦ scenes.

SNeRG [21]
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

iPhone XS OOM OOM OOM OOM OOM OOM OOM OOM -
Pixel 3 OOM OOM OOM OOM OOM OOM OOM OOM -
Surface Pro 6 ICP ICP ICP ICP ICP ICP ICP ICP -
Chromebook 28.06 OOM OOM 26.11 27.08 16.48 26.99 11.01 22.62
Gaming laptop 4.94 10.27 OOM 8.10 9.41 2.05 21.65 1.69 8.30
Gaming laptop 37.66 51.06 OOM 45.52 60.20 13.81 87.67 11.17 43.87
Desktop 120.70 147.72 81.88 436.05 232.03 92.45 507.54 39.73 207.26
GPU memory 1254.00 4729.00 8243.00 1253.00 1253.00 1253.00 1251.00 2422.00 2707.25
Disk storage 141.00 44.00 43.00 67.00 114.00 134.00 22.00 129.00 86.75

Ours
Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

iPhone XS 60.00 60.00 60.00 60.00 50.10 54.65 60.00 42.37 55.89
Pixel 3 41.68 38.71 43.09 35.59 29.56 32.35 52.65 23.52 37.14
Surface Pro 6 83.40 83.15 99.34 64.01 57.11 58.80 130.62 42.76 77.40
Chromebook 60.00 60.00 60.00 53.24 47.51 51.04 60.00 37.56 53.67
Gaming laptop 186.03 183.04 231.01 156.08 118.27 129.80 332.10 89.74 178.26
Gaming laptop 657.77 656.22 643.32 649.58 566.39 618.98 648.88 412.70 606.73
Desktop 810.99 789.30 882.23 707.27 629.70 659.95 970.35 509.48 744.91
GPU memory 451.00 590.00 450.00 456.00 723.00 721.00 322.00 594.00 538.38
Disk storage 107.00 120.00 80.00 88.00 199.00 191.00 50.00 171.00 125.75

Table 11. Rendering speed in frames per second (FPS), and GPU memory and disk storage in MB, on Synthetic 360◦ scenes.



Room Fern Leaves Fortress Orchids Flower Trex Horns Mean
NeRF [33] 32.70 25.17 20.92 31.16 20.36 27.40 26.80 27.45 26.50
JAXNeRF [14] 33.30 24.92 21.24 31.78 20.32 28.09 27.43 28.29 26.92
SNeRG [21] 30.04 24.85 20.01 30.91 19.73 27.00 25.80 26.71 25.63
Ours 31.28 24.59 20.54 30.82 19.66 27.05 26.26 27.09 25.91

Table 12. PSNR↑ on Forward-facing scenes.

Room Fern Leaves Fortress Orchids Flower Trex Horns Mean
NeRF [33] 0.948 0.792 0.690 0.881 0.641 0.827 0.880 0.828 0.811
JAXNeRF [14] 0.958 0.806 0.717 0.897 0.657 0.850 0.902 0.863 0.831
SNeRG [21] 0.936 0.802 0.696 0.889 0.655 0.835 0.882 0.852 0.818
Ours 0.943 0.808 0.711 0.891 0.647 0.839 0.900 0.864 0.825

Table 13. SSIM↑ on Forward-facing scenes.

Room Fern Leaves Fortress Orchids Flower Trex Horns Mean
NeRF [33] 0.178 0.280 0.316 0.171 0.321 0.219 0.249 0.268 0.250
JAXNeRF [14] 0.086 0.207 0.247 0.108 0.266 0.156 0.143 0.173 0.173
SNeRG [21] 0.133 0.198 0.252 0.125 0.255 0.167 0.157 0.176 0.183
Ours 0.143 0.202 0.245 0.115 0.277 0.163 0.147 0.169 0.183

Table 14. LPIPS↓ on Forward-facing scenes.

SNeRG [21]
Room Fern Leaves Fortress Orchids Flower Trex Horns Mean

iPhone XS OOM OOM OOM OOM OOM OOM OOM OOM -
Pixel 3 OOM OOM OOM OOM OOM OOM OOM OOM -
Surface Pro 6 ICP ICP ICP ICP ICP ICP ICP ICP -
Chromebook 9.75 6.02 OOM 9.68 OOM 5.12 8.68 OOM 7.85
Gaming laptop 7.77 1.28 0.80 8.46 1.14 0.67 4.72 4.18 3.63
Gaming laptop 52.40 14.45 6.15 54.47 12.43 8.77 32.87 26.51 26.01
Desktop 110.36 28.18 13.54 122.91 17.59 15.96 62.65 34.46 50.71
GPU memory 3594.00 3585.00 4729.00 3595.00 5903.00 3593.00 3595.00 5903.00 4312.13
Disk storage 149.00 288.00 408.00 162.00 704.00 321.00 251.00 415.00 337.25

Ours
Room Fern Leaves Fortress Orchids Flower Trex Horns Mean

iPhone XS 29.82 25.10 OOM 30.02 OOM 26.28 26.30 25.59 27.19
Pixel 3 13.57 12.74 8.66 14.69 10.77 12.98 13.07 12.71 12.40
Surface Pro 6 22.92 20.32 13.84 29.13 17.10 22.30 22.53 23.92 21.51
Chromebook 20.70 18.95 14.65 23.16 16.79 20.06 20.08 21.12 19.44
Gaming laptop 64.27 55.88 37.11 76.29 48.72 60.60 59.65 59.26 57.72
Gaming laptop 281.01 252.70 170.66 303.77 222.54 260.44 258.45 251.82 250.17
Desktop 377.87 352.01 254.51 397.00 323.54 367.68 359.68 362.46 349.34
GPU memory 610.00 610.00 1143.00 473.00 1276.00 611.00 604.00 747.00 759.25
Disk storage 127.00 147.00 353.00 89.00 372.00 151.00 162.00 211.00 201.50

Table 15. Rendering speed in frames per second (FPS), and GPU memory and disk storage in MB, on Forward-facing scenes.



Bicycle Flower Garden Stump Treehill Mean
JAXNeRF [14] 21.76 19.40 23.11 21.73 21.28 21.46
NeRF++ [52] 22.64 20.31 24.32 24.34 22.20 22.76
Ours 21.70 18.86 23.54 23.95 21.72 21.95

Table 16. PSNR↑ on Unbounded 360◦ scenes.

Bicycle Flower Garden Stump Treehill Mean
JAXNeRF [14] 0.455 0.376 0.546 0.453 0.459 0.458
NeRF++ [52] 0.526 0.453 0.635 0.594 0.530 0.548
Ours 0.426 0.321 0.599 0.556 0.450 0.470

Table 17. SSIM↑ on Unbounded 360◦ scenes.

Bicycle Flower Garden Stump Treehill Mean
JAXNeRF [14] 0.536 0.529 0.415 0.551 0.546 0.515
NeRF++ [52] 0.455 0.466 0.331 0.416 0.466 0.427
Ours 0.513 0.526 0.358 0.430 0.522 0.470

Table 18. LPIPS↓ on Unbounded 360◦ scenes.

Ours
Bicycle Flower Garden Stump Treehill Mean

iPhone XS OOM OOM 22.20 OOM OOM 22.20
Pixel 3 9.44 8.61 10.49 8.54 9.12 9.24
Surface Pro 6 20.24 19.12 21.67 18.21 17.97 19.44
Chromebook 15.89 14.72 16.56 14.23 15.02 15.28
Gaming laptop 55.62 59.18 58.19 51.73 51.89 55.32
Gaming laptop 195.63 194.66 204.31 178.89 189.46 192.59
Desktop 280.24 282.02 295.74 265.90 274.58 279.70
GPU memory 1350.00 1081.00 808.00 1082.00 1490.00 1162.20
Disk storage 400.00 294.00 239.00 337.00 453.00 344.60

Table 19. Rendering speed in frames per second (FPS), and GPU memory and disk storage in MB, on Unbounded 360◦ scenes.

Figure 10. Comparison between images rendered in Python and in a web browser. Image pixel value range is 0-255. Zoom in for details.


	. Introduction
	. Related work
	. Method
	. Continuous training (Training Stage 1)
	. Binarized training (Training Stage 2)
	. Discretization (Training Stage 3)
	. Anti-aliasing
	. Rendering

	. Experiments
	. Comparisons
	. Ablation studies

	. Conclusions
	. More results
	. Scene editing
	. Training
	. Network architectures
	. More details about texture images
	. Quadrature details
	. Initial meshes
	. Per-Scene metrics

