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In this supplementary material, we provide two sections to
better support the arguments and results in the main paper:
(a) more details of the specific settings in our experiments
for better reproducibility, and (b) more extensive qualita-
tive results to better demonstrate the interpretability of our
learned representations. The sections will be presented with
information corresponding to different datasets used in the
main paper including: Movie Contrastive Learning 30K
(MovieCL30K) dataset, Long-Form Video Understanding
(LVU) dataset [18], MovieNet dataset [12] [17] and Mature
Content Dataset (MCD).

1. Experiment Details

We use PyTorch 1.8 [15] as our deep learning library and
NVIDIA Tesla A100/V100 GPUs for computation. During
contrastive learning, we use 8 GPUs with distributed data
and model parallelism. For supervised learning of MLP on
downstream tasks, only 1 GPU is needed.

1.1. MovieCL30K

This section corresponds to §4.1.2 in the main paper.
a. Shot-encoder: Our shot encoder has two key differences
comparing with ShotCoL [2]. First, we can select the pos-
itive keys during training, which makes training more effi-
cient where we do not use the stale positive keys for epochs
before updating them. Second, ShotCoL [2] focused on
learning a representation that is most useful for the scene
boundary detection task, so it could benefit from contextual
and semantic information in a neighborhood size similar to
the length of a scene. However, we observed that when the
neighborhood size is relatively large (e.g., 16) as selected in
ShotCoL, the positive key may end up being almost iden-
tical to the query. This is still useful information for scene
boundary detection task because there could be almost iden-
tical shots in a scene. However, for our objective to learn a
representation that focuses on appearance, this may reduce
the effectiveness of representations because the positive key
is more similar to augmented images which were demon-
strated to be less effective in [2].

b. Movie-level similarity learning: When using movie
metadata to train the movie encoder (Figure 2 in the main
paper) on MovieCL30K, we used SGD to optimize with a
learning rate of 0.1, batch size of 256 and epoch number of
100. The same set of hyper-parameters was applied to all
three types of movie metadata (co-watch, genre, and syn-
opsis). Recall that within each batch, there are 256 pairs of
movies represented by feature matrices extracted from our
shot encoder, and the dimension of each feature matrix is
1024×512. These pairs are passed through Emovie to predict
whether two movies are similar based on movie metadata.
c. Scene contrastive learning: After movie-level similar-
ity learning, we select the set of similar scene-pairs based
on the learned space in Emovie. Specifically, after extracting
features of all shots in each input movie by Eshot , the movie
is represented as a matrix of M×512, where M is the num-
ber of shots in the movie. Notice that the length of the movie
is no longer restricted to 1024, so that all shots can be con-
sidered during similar scene selection. The feature matrix is
then passed to Emovie before the last fully-connected layer,
and becomes a new feature matrix. Similar process is done
on another movie considered similar to the input movie
with N shots, and the shot adjacency matrix A of these two
movies takes the size of M×N. We then go through all 9×9
windows in A with stride 1, and calculate the average value
in each window to represent the scene-level similarity of the
two movies. Finally, we pop the scene-pairs with top 50%
highest scene-level similarity scores while keeping the se-
lected scenes to be non-overlapping. This generates a set of
scene-pairs for each type of movie metadata.

With the generated set of scene pairs, we use them
for scene contrastive learning following the MoCo frame-
work [9], while substituting encoder to be ViT [4] and op-
timization to be AdamW [14] instead of SGD [8]. Specifi-
cally, following [9], we use feature dimension of 128, queue
size of 65, 536, MoCo momentum of 0.999 and softmax
temperature of 0.07 during momentum contrastive learning.
Following [4] [3], we use learning rate of 1.5e−4, weight
decay of 0.01, number of warm-up epochs of 40, batch size
of 128 and number of epoch of 100.
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Hyper-parameters
Classification Regression

place director relation speak writer year genre view like
learning rate 0.1 1.0 0.01 0.1 0.5 0.1 0.1 0.01 0.1

batch size 128 256 16 256 32 128 256 16 16
epoch 400 400 400 400 400 400 400 500 500

dropout 0.1 0.5 0.5 0.1 0.25 0.75 0.1 0.8 0.5

Table 1. Hyper-parameters used in the MLPs for LVU tasks.

1.2. LVU

When producing the results in Table 2 in the main paper,
following [18] where the model of each task is trained sep-
arately with parameters selected by validation set, we se-
lected the parameters and hyper-parameters of MLP for
each task by the validation set in LVU and presented cor-
responding results on test set. The hyper-parameters used
in MLPs of each task on representations pre-trained by co-
watch is shown in Table 1.

1.3. MovieNet

This section corresponds to §4.3 in the main paper.
a. Place tagging: For the results of Ours in Table 3 in
the main paper, we used MLP with two 512-dimensional
hidden layers optimized by SGD with leaning rate of 5.0,
dropout of 0.25, epoch number of 200 and batch size of 512.
The problem was formulated as a multi-label classification
task and optimized by BCEWithLogitsLoss [15].
b. Scene boundary detection: For the results of Ours in
Table 4 in the main paper, we used MLP with two 512-
dimensional hidden layers optimized by SGD with leaning
rate of 0.03, dropout of 0.8, epoch number of 800 and batch
size of 4096.

1.4. MCD

We used SlowFast 8x8 R50 and SlowFast 8x8 R101 for the
SlowFast models [6] used in Table 5 in the main paper. Both
models take 64 frames from each video clips. When extract-
ing representation from the SlowFast models, we used the
average pooling layers before the final classification layer,
and the representation has 2304 dimensions concatenated
from the slow and fast pathways. Similarly for the X3D-
L model [5], we used the fully connected layer before the
final classification layer, which has 2048 dimensions, and
the X3D-L model takes 16 frames from each video clips.
For the CLIP model [16], we used ViT-B/16 based visual
encoder, and it takes the same 9 frames as the input to our
model from each video clip. We first extracted the embed-
dings with 512 dimensions from each frame and then do an
average pooling across all 9 frames, which is used as the
representation for the CLIP model. For training the model
to classify the age-appropriate activities, we used a 3-layer
MLP model with 512 nodes in the hidden layers.

2. Additional Results
2.1. MovieCL30K

We present the similar scene pairs selected by our scene
representation learned on co-watch in Figure 1. We also
present the similar scene-pairs found by pre-trained CLIP
visual features [16] in Figure 2 and the ones found by pre-
trained Merlot Reserve visual features [19] in Figure 3, re-
spectively. We can see that scene-pairs found by our ap-
proach are significantly more thematically similar, while
the ones found by other features focus much more on ap-
pearance similarity. Moreover, CLIP [16] and Merlot Re-
serve [19] features produce results that are mostly related
to human faces, which is not sufficiently useful for general-
purpose semantic scene understanding. These observations
provide insights about the effectiveness of our approach
on a wide variety of downstream tasks related to seman-
tic scene understanding compared to other state-of-the-art
representations. Lastly, we can also noticed that the scenes
pairs found by Merlot Reserve visual features [19] are sim-
ilar to the ones found by CLIP visual features [16], which
can indicate that the added audio modality in Merlot Re-
serve in not directly influencing the distribution of embed-
ding in visual encoder before the modalities are fused.

2.2. LVU

To demonstrate the effectiveness of our learned scene-
representation, we use the place-labeled scenes from
LVU data [18] in a retrieval-setting. Specifically, using
query scenes each with a particular place-label from the
validation-set, we retrieve 1, 5, and 10 nearest neighbors
from the training-set using their L2 distances. Precision
results for various settings are given in Table 2 where our
encoder is compared with the pre-trained visual encoder of
CLIP [16] and the SlowFast model [6] pre-trained on Kinet-
ics [1] and AVA [13].

Moreover, to provide qualitative insights into the effec-
tiveness of our learned scene-representation, Figure 4 shows
the retrieval results using an example query for 4 of the 6
categories based on ours as well as CLIP [16] visual rep-
resentation. It can be seen that although CLIP visual rep-
resentation can capture local appearance-based patterns ef-
fectively, it is not able to capture longer-duration semantic
aspects of scenes. In contrast, our representation is able to



Figure 1. Similar scene-pairs found by our representation - Given a similar movie-pair Need For Speed and The Fast & Furious: Tokyo
Drift, we present representative examples from the set of similar scene-pairs (connected by orange arrow) found by our representation
(sorted by similarity). Comparing with the ones found by CLIP visual feature [16] in Figure 2 and Merlot Reserve feature [19] in Figure 3,
these scene-pairs are more thematically meaningful, which contributes to the effectiveness of our representation on downstream tasks
related to semantic scene understanding.



Figure 2. Similar scene-pairs found by CLIP - Given a similar movie-pair Need For Speed and The Fast & Furious: Tokyo Drift, we
present representative examples from the set of similar scene-pairs (connected by orange arrow) found by CLIP visual feature [16] (sorted
by similarity). Comparing with the ones found by our representation in Figure 1, these scene-pairs focus more on appearance-based
similarity and are mostly related to human faces, which are not sufficiently semantically meaningful for semantic scene understanding.



Figure 3. Similar scene-pairs found by Merlot Reserve - Given a similar movie-pair Need For Speed and The Fast & Furious: Tokyo
Drift, we present representative examples from the set of similar scene-pairs (connected by orange arrow) found by Merlot Reserve visual
feature [19] (sorted by similarity). Comparing with the ones found by our representation in Figure 1, these scene pairs are more similar to
the ones found by CLIP in Figure 2, which focus more on appearance-based similarity and are mostly related to human faces, which are
not sufficiently semantically meaningful for semantic scene understanding.



Models CLIP [16] SlowFast [6] Ours
Architecture ViT-B/16 [4] ResNet-101 [11] ViT-B/16 [4]

Pre-training data 400M image-text pairs Kinetics [1]+AVA [13] MovieCL30K
Pre-training task image-text similarity action recognition scene contrast

top-1 top-5 top-10 top-1 top-5 top-10 top-1 top-5 top-10
office 30 20 19 0 16 17 30 36 26
airport 0 15 10 0 0 10 0 15 10
school 28.57 26.66 25 76.19 20.47 32.14 50 49.04 45.95
hotel 35.71 28.57 29.28 0 0 10 42.85 20 24.28
prison 52.94 42.94 42.94 35.29 40 20.29 58.82 45.88 40

restaurant 20 13.99 13.99 0 20 10 40 16 14
all queries 35.08 29.64 28.85 38.59 22.63 21.84 47.36 39.29 35.70

Table 2. The place-labeled scenes in LVU data [18] are formulated to a retrieval setting, where the goal is to retrieve similar scenes from
training-set given query scenes from validation-set. Representations pre-trained on different configurations as specified in the table are
compared. The precision results for different place categories are reported with the size of retrieved set to be 1, 5 and 10.

Figure 4. Qualitative results of place retrieval using LVU data [18] are shown. For each query scene in validation-set, two similar scenes
from training-set are retrieved based on ours and CLIP visual representation [16]. Example results show that our feature can capture both
scene-appearance as well as their broader thematic signature, while CLIP [16] can only capture scene-appearance effectively.

capture the appearance as well as semantic aspects of scenes
effectively, and is therefore able to avoid the types of con-
fusions that confound the CLIP representation.

We applied average pooling instead of concatenation on
CLIP feature [16] because during retrieval, we do not want
the order of shots to influence the results, thus, having one
vector per input scene is reasonable. Notice that for the
place of airport, both our representation and CLIP have top-
1 accuracy of 0, it is because the number of query is very
limited in the validation set of LVU [18] (4 airport-labeled
scenes), and thus the airport example presented in Figure 4
comes from the top-2 retrieval result.

In Figure 5, we show five example scenes with their
ground truth genre in LVU as well as our prediction. We
can see that our model was able to capture the feature that is
useful for correct genre prediction in most cases. For cases
like example 5 on the last row, we assume it is because it
is sometimes difficult to identify genre from just one scene

in the movie, and since the meta information like genre in
LVU was retrieved from IMDB entries [18], they can not
always reflect the genre of a specific scene.

In Figure 6, we show six examples from the way-of-
speaking prediction task in LVU. We can see that when
the visual information is sufficient to make predictions, our
model can perform well, but for cases like example 6 on
the last row, it can be insufficient to predict just based on
visual cues, and this might indicate that for tasks like way-
of-speaking prediction, it may be beneficial to include audio
modality for better accuracy. This also corresponds to the
results in Table 2 of the main paper, where the accuracy of
way-of-speaking is lower than other tasks. For relationship
prediction in Figure 7 we can see that the model can make
ambiguous predictions when there are more than one pairs
of characters in the scene, and this may indicate that when
analyzing relationship in scenes, it can be helpful to focus
more on leading characters.



Figure 5. Additional qualitative results on LVU datasets [18]. Five
example scenes with their ground truth genre labels as well as our
predictions are shown. For example 5, our prediction is different
from the label even though looking only at the visual content of
this particular scene it makes sense to infer it as a romantic scene.
Our hypothesis is that as the genre label of the LVU dataset was
acquired from movie-level meta data, sometimes it is not directly
applicable to the genre of all of the constituent scenes of a movie.

2.3. MovieNet

We present qualitative results on MovieNet [12] [17] dataset
in Figure 8. This corresponds to Table 3 and Table 4 in the
main paper and includes examples on place tagging as well
as scene boundary detection (SBD) tasks. We show three
examples from test set of MovieNet, and in each example,
there are two scenes divided by the green dotted line. For
each scene, the task is to predict what are the multi-label
place tags of the scene, and for the two scenes together, the
goal is to predict whether the shot boundaries between each
pair of shots are also scene boundaries.

We can see that for SBD, our model can perform well to
clearly identify the scene boundaries. For place tagging, it is
a much more difficult task involving holistic understanding
of the scenes, and although our model outperformed exist-
ing state-of-the-art models by a large margin in Table 3 in
the main paper, it is still a really challenging and unsolved

Figure 6. Six examples from the way-of-speaking prediction task
in LVU [18]. Results show that when visual information is suf-
ficient to predict way-of-speaking, our method can perform well,
and for cases like example 6, it might be beneficial to add audio
modality to further improve the accuracy.

task. For example, some places are not easy to identify
based on a few frames (e.g. playground), and some places
can vary a lot in term of appearance but have same place tag
(e.g. car). This is also partially caused by the lack of labeled
data, where for the 90-category multi-label problem, there
are 19.6K place tags, with ∼11.7K for training, leading to
∼130 labeled training tags per category on average.

2.4. MCD

Representative examples from the three age-appropriate ac-
tivities in MCD dataset are provided in Figure 9. We also
show the samples for each of the 4 classes of our MCD
dataset in Figure 10 along with the corresponding detec-
tion results (i.e., the class with maximum probability) from
both our model and CLIP model. For sex examples, we



Figure 7. Examples of relationship prediction task in LVU [18].
Sometimes the relationship can be ambiguous when there are more
than two leading characters in the scene. Also, the uncertainty
of some relationships makes prediction even more challenging.
For example, it can be difficult to distinguish husband wife and
boyfriend girlfriend without semantically understanding of con-
text and plot.

Figure 8. Qualitative results on MovieNet place tagging [12] and
scene boundary detection tasks [17]. Although our model out-
performed existing state-of-the-art models by a large margin in
Table 3 in the main paper, multi-labeled place tagging is still a re-
ally challenging problem. Some tags may not be apparent and the
intra-category variance is large in this task.

Figure 9. Examples of 3 types of age-appropriate activities in our
data. Sensitive parts of images have been intentionally redacted
here. See supplementry materials for more examples.

Figure 10. Representative examples in MCD comparing the pre-
dictions based on our representation with CLIP visual feature.
Sensitive parts of some images are intentionally redacted here.

Models Pre-training data sex violence drug-use average

ShotCoL [2] movie shot pairs 62.3 58.7 47.1 56.0
MerlotReserve [19] Youtube videos 77.0 68.2 53.4 66.2
BridgeFormer [7] image+video 74.8 61.4 61.2 65.8

Ours MovieCL30K 81.5 70.2 61.8 71.1

Table 3. Comparisons on MCD with other pre-trained models.

can see that our model has higher confidence scores com-
pared to CLIP model especially when the images have dark
illumination. For violence, the CLIP model sometimes mis-
takes scenes with two closed persons as sex as shown in the
first example. Similarly for drug-use examples, our model
classifies them more confidently, and CLIP model misses
the small cigarette in the third example and classifies it as
none. The none examples show that the CLIP model of-
ten mistakes them with other classes, such as violence and
drug-use, while our model is able to classify them correctly.
This indicates our scene representation performs better than
CLIP on age-appropriate activities, demonstrating the ef-
fectiveness of our representation in video moderation. Ad-
ditional quantitative results on MCD are provided in Table 3
for comparisons with other pre-trained large models.



3. Additional Insights

a. Details of scene adjacency matrix: Consider an exam-
ple movie-pair x1 and x2 with m and n number of scenes
respectively. The shape of their scene adjacency matrix B
is m×n. Each value in B indicates the similarity score
between two scenes, one from each movie. We rank all
the similarity scores in B so that we know which pairs of
scenes are most similar. We first select the scene-pair (say
m0 and n0) in B with the highest similarity score and add it
to Pscene. Moreover, we keep a record of this scene-pair, so
that m0 and n0 will not be selected again from movie-pair
x1 and x2. We then move on to the scene-pair correspond-
ing to the second highest value in B, and only add it to
Pscene if neither of the scenes in that scene-pair is m0 or n0.
We carry out this process for the top 50% of the most similar
scene-pairs in B. This movie-pair level routine is repeated
for all pairs of movies in our dataset to build Pscene.
b. Effectiveness of pre-trained CLIP weights: In gen-
eral, it has been demonstrated that pre-training does not
always result in improvements [10]. Specifically for our
case, there are two key reasons why using pre-trained CLIP
does not offer additional benefits. First, the domain gap be-
tween pre-trained CLIP (internet images and texts) and our
data (movies) is quite high. Second, CLIP uses individual
images and incorporates no temporal information. How-
ever, our use of scenes heavily relies on information among
frames and shots.
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