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Figure 5. Visualization examples of the coefficient rlij − rhij at different layers k on IEMOCAP.

A. Unimodal feature extraction

The textual features are extracted using the RoBERTa
Large model [4], which is firstly fine-tuned for emotion pre-
diction from the transcript of conversations. After the fine-
tuning process, the utterances are fed to the model and the
activations from the final four layers are extracted as four
textual vectors, which are then normalized and averaged for
the final textual representation. The dimension of textual
features in our paper is 1024.

The acoustic features are obtained by the openSMILE
toolkit [2]. IS13 configuration file is used for the IEMO-
CAP dataset and IS10 configuration file is used for the
MELD dataset.

The visual features are extracted with a DenseNet [3]
pre-trained on the Facial Expression Recognition Plus
(FER+) corpus [1] for the MELD dataset. For the IEMO-
CAP dataset, 3D-CNN is used with feature maps being 128
for 3D filters of size 5, followed by a max-pooling operation
and an activation.

B. Visualization
In Section 3.3.3, we introduce a coefficient rlij − rhij to

model the varying importance of different frequency con-
stituents. If rlij − rhij < 0, the high-frequency messages
dominate, and vice versa. Figure 5 shows two visualiza-
tion examples of the coefficients of two different nodes at
different layers on IEMOCAP. It can be observed that, the
coefficient allows each central node to adaptively receive
messages in different frequency from different neighbours.
The patterns also vary across layers, leading to better flexi-
bility for capturing emotion discrepancy and commonality.

C. Additional experimental results
In this section, we provide additional experimental re-

sults, including the results of each individual label and the
detailed complexity analysis. Table 4 shows the results of
each individual label and M3Net outperforms prior works in
the majority of classes. Table 5 presents the comparison of
computational complexity and shows that M3Net can boost
performance without extra burden.
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Methods IEMOCAP MELD
Happy Sad Neutral Angry Excited Frustrated Acc. F1 Neutral Surprise Fear Sad Joy Disgust Anger Acc. F1

DialogueGCN 57.89 77.89 65.51 64.72 68.34 57.42 63.96 64.44 77.79 57.29 7.69 36.66 62.77 16.07 45.49 63.49 62.78
MMGCN 52.70 81.45 62.66 67.79 73.28 61.83 66.79 66.99 78.98 59.47 13.33 40.00 63.04 15.19 54.29 66.63 65.13

DialogueRNN 52.44 80.87 70.53 67.00 69.20 62.76 68.64 68.72 78.89 58.78 28.30 40.35 63.50 26.28 53.28 65.94 65.31
MetaDrop 63.98 81.67 69.80 62.97 72.66 64.28 69.38 69.59 79.17 59.52 24.78 40.88 64.48 28.57 54.60 66.63 66.30
MM-DFN 46.22 83.37 71.15 68.21 75.09 63.82 69.87 69.48 79.70 58.78 20.22 41.98 62.90 29.13 53.99 67.01 66.17

M3Net (ours) 62.05 83.67 70.80 68.67 79.66 64.43 72.46 72.49 80.13 60.25 26.32 39.64 64.61 29.80 56.54 68.28 67.05

Table 4. Results of each considered primary emotion classification task (F1 score per category).

Methods DialogueGCN MMGCN DialogueRNN MetaDrop MM-DFN M3Net (ours)

FLOPs (I) 10.86G 2.29G 19.67G 26.90G 13.66G 5.18G
Params (I) 3.92M 2.64M 4.21M 9.41M 2.27M 3.50M
FLOPs (M) 1.81G 1.09G 10.08G 15.93G 10.40G 1.24G
Params (M) 2.51M 1.50M 3.56M 6.17M 1.17M 3.52M

Table 5. Comparison of computational complexity. (I) refers to
results on IEMOCAP, and (M) refers to results on MELD.
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Figure 6. Comparison with FAGCN (solid lines) and replacing the
updating mode only (dotted lines). UM = updating mode.

Moreover, as we discussed in Section 3.3.4, in our multi-
frequency module, in addition to the hyper-parameter, the
node embedding updating mode is another important dis-
tinction from FAGCN. Hence, we further conduct exper-
iments to verify whether using this embedding updating
mode only can produce good results. We replace the up-
dating mode in FAGCN with the one in Eq. (10) and con-
duct experiments under different values of ε. The results
are shown in Figure 6. It can be seen that the results are
inferior to ours, and to FAGCN in most cases, which further
suggests the necessity and superiority of our design.

References

[1] Emad Barsoum, Cha Zhang, Cristian Canton-Ferrer, and
Zhengyou Zhang. Training deep networks for facial expres-
sion recognition with crowd-sourced label distribution. In
Proceedings of the 18th ACM International Conference on
Multimodal Interaction, ICMI 2016, pages 279–283, 2016. 1
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