
NeuralEditor: Editing Neural Radiance Fields via Manipulating Point Clouds
Supplementary Material

Jun-Kun Chen1† Jipeng Lyu2† Yu-Xiong Wang1

1University of Illinois at Urbana-Champaign 2Peking University †Equal Contribution
{junkun3, yxw}@illinois.edu lvjipeng@pku.edu.cn

This document contains additional descriptions (e.g., im-
plementation details, experimental setting details, etc.) and
extra experiments (e.g., ablation study, deformation on the
Tanks and Temples dataset, etc.). The content of this docu-
ment is summarized as below:

A. Black/White Background 1

B. Additional Ablation Study 2

C. Non-Continuous Deformation Task 2

D. Experiment on Tanks and Temples Dataset 2

E. Intermediate Point Clouds for Scene Morphing 4

F. Other Metrics in Table 1 4

G. High-Resolution Visualization Figures 4

H. Implementation Details 4
H.1. K-D Voxels & Integration 4
H.2. Phong Reflection Color Modeling 4
H.3. Point Cloud Optimization 4
H.4. Training Settings 5
H.5. Matching Algorithm for Scene Morphing . . 5

I . Limitations 5
I.1 . Point Cloud-Guided NeRF 5
I.2 . Environment Modeling in Shape Deforma-

tion Task 6
I.3 . Evaluation for Scene Morphing Task 6

A. Black/White Background
In the main paper, we evaluated the models and pre-

sented the results on a black background, for better contrast
and clearer detail visualization. Here, we provide experi-
mental results for three representative deformed scenes of
NeRF Synthetic [4] on a white background. As shown in
Table A, we have the same conclusions as the experiment

Model Zero-Shot Inference Fine-Tune for 1 Epoch
Hotdog Lego Drums Hotdog Lego Drums

PSNR ↑
DeformingNeRF [8] - 12.28 - - - -
PointNeRF [7] 25.48 23.84 20.52 35.71 30.10 26.71
Naive Plotting 26.87 24.70 20.92 36.00 30.94 27.45
NeuralEditor w/o IST 26.88 24.71 20.92 36.27 31.45 27.64
NeuralEditor (Ours) 27.27 26.13 21.41 36.66 31.70 27.68

SSIM ↑
DeformingNeRF - 0.690 - - - -
PointNeRF 0.948 0.932 0.902 0.987 0.976 0.955
Naive Plotting 0.951 0.932 0.913 0.987 0.979 0.963
NeuralEditor w/o IST 0.951 0.932 0.913 0.987 0.981 0.963
NeuralEditor (Ours) 0.957 0.964 0.920 0.988 0.983 0.964

LPIPS AlexNet ↓
DeformingNeRF - 0.271 - - - -
PointNeRF 0.072 0.064 0.107 0.033 0.025 0.067
Naive Plotting 0.066 0.055 0.086 0.022 0.019 0.044
NeuralEditor w/o IST 0.064 0.054 0.085 0.021 0.017 0.043
NeuralEditor (Ours) 0.059 0.031 0.079 0.021 0.016 0.043

LPIPS VGG ↓
DeformingNeRF - 0.291 - - - -
PointNeRF 0.079 0.088 0.108 0.053 0.054 0.080
Naive Plotting 0.080 0.089 0.093 0.047 0.049 0.062
NeuralEditor w/o IST 0.079 0.087 0.092 0.045 0.043 0.061
NeuralEditor (Ours) 0.073 0.056 0.087 0.044 0.041 0.060

Table A. Consistent with the results on a black background in the
main paper, we have the same conclusions when using on a white
background here: NeuralEditor significantly and consistently out-
performs PointNeRF [7] and Naive Plotting on the three represen-
tative deformed scenes of NeRF Synthetic [4], in both zero-shot in-
ference and fine-tuning settings. With the precise point cloud gen-
erated by NeuralEditor, even Naive Plotting consistently outper-
forms PointNeRF. The metrics investigated here are peak signal-
to-noise ratio (PSNR), structural similarity index measure (SSIM),
and learned perceptual image patch similarity (LPIPS).

on a black background: NeuralEditor significantly and con-
sistently outperforms PointNeRF [7] and Naive Plotting, in
both zero-shot inference and fine-tuning settings.

Interestingly, we observe that the results on a white back-
ground have consistently worse metric values than those on
a black background. We find that this phenomenon is not
specific to our task of shape deformation. In fact, even in
rendering the original scene, we observe that a white back-
ground results in lower metric values, as shown in Table B

1

Background Color PSNR ↑
White [7] 32.40
Black 32.99

Table B. For the conventional rendering [4] of the original scene
of NeRF Synthetic (e.g., Lego here), the metric values are also
slightly worse when using a white background as in prior work [4,
7] than a black background.

for the experiment of PointNeRF 20K (PointNeRF trained
for 20K epochs, following an evaluation setting in [7]) on
Lego of NeRF Synthetic. The impact of the background
color on NeRF rendering is an interesting aspect for future
investigation.

B. Additional Ablation Study

Our additional ablation study results are in Table C. We
observe that:

• All components in our NeuralEditor, including in-
finitesimal surface transformation (IST), deterministic
integration, and Phong reflection, benefit the rendering
results. Notably, our NeuralEditor still outperforms
PointNeRF without any of these components.

• For the variant without Phong reflection modeling,
the zero-shot performance is close to that of the full
NeuralEditor, but the performance gap becomes much
larger after fine-tuning. This demonstrates that the use
of visual attributes modeled by Phong reflection (e.g.,
tint) helps fast fitting to the ambient environment.

• Our NeuralEditor’s performance drops with the initial
point cloud or the final point cloud produced by Point-
NeRF, showing the importance of a precise point cloud
optimized by our NeuralEditor for the rendering task.
In these experiments, we apply de-noising on the point
clouds to support IST, which is not compatible with the
noisy original point clouds generated by PointNeRF.

• With half of the points, the performance of NeuralEd-
itor decreases, but it still outperforms the baseline
PointNeRF. This validates that it is not the model ca-
pacity but our model design together with the precise
point clouds that leads to our superior performance.

• Our NeuralEditor even supports point cloud optimiza-
tion on the deformed scene, which further improves the
rendering results and achieves better PSNR than fine-
tuning without point cloud optimization for the same
epochs. The detailed settings of fine-tuning are de-
scribed in Section H.4.

Figure A. Unlike Deforming-NeRF [8], our NeuralEditor has na-
tive support for non-continuous deformation tasks.

C. Non-Continuous Deformation Task

Figure A shows a non-continuous deformation task con-
structed on the Lego scene of NeRF Synthetic, by cutting
the scene from the xOy, yOz, and zOx planes. NeuralEdi-
tor natively supports such deformation, while DeformingN-
eRF fails, further validating the superiority of NeuralEditor
over cage-based methods for tackling deformation tasks.

D. Experiment on Tanks and Temples Dataset

We also present the evaluation results of our NeuralEdi-
tor and baselines Naive Plotting and PointNeRF [7] on the
Tanks and Temples dataset [2], as shown in Figure B. As
this dataset provides white-background ground truth images
for original scenes, we use a white background for evalua-
tion and visualization. Our NeuralEditor still produces bet-
ter rendering results with fewer artifacts than baselines.

Note that Tanks and Temples is not a standard NeRF
dataset but a multiview stereo (MVS) dataset. It contains
some background regions that are not fully cut out, e.g.,
the blue bar on the top of Caterpillar’s cab (2nd column
in Figure B) is a part of the sky background, making the
NeRF rendering results blurry and noisy as some points are
mistakenly grown in those regions. We propose a back-
ground sphere technique (explained in Section I.1) to im-
prove the rendering results in this situation. While this ap-
proach is helpful, it cannot completely resolve the issue.
Additionally, inconsistent exposure settings used across dif-
ferent views of the same scene cause the rendering results
to appear blurry and flashing. Therefore, all three meth-
ods cannot achieve rendering results as clean and realistic
as those on NeRF Synthetic, but ours still significantly out-
performs the baselines.

2

Type Variant PSNR ↑ on Hotdog
Zero-Shot Fine-Tune

NeRF Model Full NeuralEditor 27.49 37.22
− our improved point cloud-guided NeRF +PointNeRF [7] 25.95 36.08

Component

Full NeuralEditor 27.49 37.22
− IST (‘Ours w/o IST’) 27.02 36.69
− integration + traditional point sampling 27.48 36.69
− deterministic integration + stochastic integration 27.46 36.87
−NeRF modeling + plotting (‘Naive Plotting’) 27.01 36.38
− normal vectors 27.26 37.00
−Phong reflection color modeling + traditional color modeling 27.21 36.51

Point Cloud

Full NeuralEditor 27.49 37.22
− point cloud optimization (w/ initial point cloud) 25.56 35.93
− our optimized point cloud + point cloud optimized by PointNeRF 26.61 35.68
− 50% points 26.84 36.59

Fine-Tune

Fine-tune 0 epoch (‘zero-shot’) 27.49
Fine-tune 1 epoch 37.22
Fine-tune 4 epochs 38.12
Fine-tune 10 epochs 38.56
Fine-tune 10 epochs w/ point cloud optimization 38.87

Table C. Ablation study experiments show that (1) All components in NeuralEditor benefit the rendering results on deformed scenes; (2)
Our NeuralEditor generates precise point clouds, which are crucial for shape editing tasks; (3) Our NeuralEditor even supports point cloud
optimization during fine-tuning to further improve the rendering performance. ‘−’ denotes that a certain component is removed, while ‘+’
denotes that a certain component is added.

Figure B. Our NeuralEditor also generates better rendering results on deformed scenes of the Tanks and Temples [2] dataset with much
fewer artifacts.

3

E. Intermediate Point Clouds for Scene Mor-
phing

We show the intermediate point clouds for the scene
morphing task (Figure 9) in Figure D.

F. Other Metrics in Table 1

We provide the results of the shape deformation task
(Table 1 in the main paper) under the metrics of peak
signal-to-noise ratio (PSNR), structural similarity index
measure (SSIM), and learned perceptual image patch simi-
larity (LPIPS) in Table D.

G. High-Resolution Visualization Figures

Here we provide the higher-resolution versions of the
same experimental visualization figures in the main paper.
The correspondence is listed below:

• Figure 6 (optimized point clouds): Figure E.

• Figure 7 (baseline DeformingNeRF): Figure F.

• Figure 8 (shape deformation): Figure G.

• Figure 9 (scene morphing): Figure H, with full morph-
ing results for the baseline PointNeRF.

H. Implementation Details

H.1. K-D Voxels & Integration

We use a 21-layer K-D tree to build K-D voxels, which
can contain up to 221 (∼ 2 million) points. Compared with
PointNeRF that typically deals with 1 million points, our
NeuralEditor can hold twice the number of points for higher
capacity, and also achieves better results with the same mag-
nitude of points as PointNeRF, as shown in Section B.

We use the voxels in the bottom 4 non-leaf layers for
rendering, and use the additional 5th layer from the bottom
only for point cloud growing. When doing integration for
rendering, we uniformly select s points on the intersect in-
terval, including the two side points, and apply spline inte-
gration using the features of these points, where we choose
s = 8, 11, 16, 22, 22 for the 5 used layers from the bottom.
For the feature of each selected point, we use its K nearest
neighbors (KNN) for interpolation, where K = 32.

Such integration is not only for aggregating the average
point features over the interval, but also for calculating the
average normal vectors and average IST – we use KNN to
interpolate these values in a similar manner as interpolating
the features. For each segment, we use the average point
feature, average normal vector, and average IST in the color
modeling of the representative point.

H.2. Phong Reflection Color Modeling

Consistent with RefNeRF [6], we use several multilayer
perceptrons (MLPs) that directly take the integrated aver-
age feature as input to obtain the tint, roughness, modeled
normal vector, and diffuse and specular color. The mod-
eled normal vectors are trained with and controlled by the
regularization losses introduced in RefNeRF. These normal
vectors may be different from the normal vectors estimated
from the point cloud, and they are optimized towards the es-
timated normal vectors via an additional regularization loss
weighted by point confidence. The effect of this somewhat
redundant modeling of normal vectors is two-fold: (1) The
outlier points with abnormal normal vectors can be difficult
to fit into the modeled ones, so their confidence values will
be driven to zero when minimizing the regularization loss;
(2) The estimated normal vectors can supervise and provide
extra shape information for the point features through the
MLP that models the normal vectors.

H.3. Point Cloud Optimization

Pruning & Growing. Following PointNeRF, we define
the defects of a point cloud as two types: outliers and holes.
So any shape defection condition can be decomposed into a
sequence of these two types of simple defects. We design
our optimization strategy based on the “pruning and grow-
ing” (P&G) method introduced in PointNeRF, which prunes
the outliers by driving their confidence values to zero during
training, and grows the point cloud to probe holes by select-
ing points from the sampled points on the training rays.

Our strategy is different from PointNeRF in several im-
portant ways. In our growing process, we grow all rays in
the training dataset at a special evaluation epoch (“growing
epoch”). For each ray, we pick the point far from any point
in the point cloud with the highest volume density as a can-
didate. The candidate point whose ray has a higher pixel
rendering loss is assigned a higher priority for being added
to the point cloud. We then introduce a K-D tree-guided al-
gorithm to down-sample these growing candidates: We start
from the root node, and recurse on the sub-nodes until we
reach a pre-set voxel size; we then add the candidate point
with the highest priority in this voxel to the point cloud,
while disregarding other candidate points in the same voxel.
Doing so ensures the added candidate points uniformly dis-
tributed throughout the space, by preserving only the points
with the highest priorities within their respective regions.
We finalize the growth of candidate points by setting their
features to interpolated features and their confidence val-
ues to 0.5. Note that PointNeRF uses P&G in conjunction
with a stochastic training process, whereas we apply it to
our deterministic NeuralEditor during a standalone grow-
ing epoch, which enhances training stability. As a result,
we obtain precise point clouds while PointNeRF cannot.

Point Cloud Denoising. It is common that a point cloud

4

contains some noisy or isolated points. To remove these
isolated points, we use Open3D [10] to identify statistical
outliers w.r.t. the K-th nearest neighbor distance of each
point, where K = 64 in our setting. Also, as mentioned
above, noisy points may have irregular estimated normal
vectors, and their confidence will be driven to zero with the
regularization losses introduced in Section H.2.

Point Cloud Optimization Process. We regard one
“point cloud optimization process” as an additional pro-
cess before one training epoch, which includes (1) applying
one growing epoch to obtain grown points, (2) pruning the
isolated points and the points with confidence values lower
than 0.1, and (3) constructing K-D voxels with the adjusted
point cloud for further training. During training (Section
H.4), we apply this process with a few training epochs to
optimize the point cloud.

H.4. Training Settings

Training on Original Scene. We pre-train NeuralEdi-
tor on the original scene using per-scene optimization, and
obtain a model that includes a precise point cloud and its
points’ features for shape editing tasks. During per-scene
pre-training, we start with the initial point cloud generated
by the point generation network. We first train our model
for 3 epochs as warm-up. From the 4th to the 12th epoch,
we include an additional point cloud optimization process
(Section H.3) before each training epoch. By the end of
the 12th epoch, the point cloud is determined and precise
enough. We keep tuning the model parameters on this un-
derlying point cloud for up to 100 epochs, controlled with
early stopping. Notably, the precise point cloud can be de-
termined and obtained within the first 12 training epochs,
even though the whole training process may take a long
time.

Fine-Tuning on Deformed Scene. We apply the same
training process during fine-tuning on deformed scenes. For
the setting “Fine-tune 10 epochs w/ point cloud optimiza-
tion” in Table C, we first train one epoch as warm-up, then
train with an additional point cloud optimization process for
5 epochs, and continue to fine-tune on the optimized point
cloud for the rest 4 epochs.

H.5. Matching Algorithm for Scene Morphing

To perform scene morphing, we generate the interme-
diate point clouds using a point cloud diffusion model [3].
However, these point clouds are unindexed. To render the
scene with NeuralEditor, we need to assign an index to each
point. This index assignment can be solved by a matching
algorithm. Specifically, given point clouds P0, P1, · · · , Pn,
we can match the points in each adjacent pair of point
clouds Pi and Pi+1, and then permute the points in Pi+1

according to the matching to align the indices.
We design a simple matching algorithm based on K-D

Figure C. Modeling a background sphere helps NeuralEditor to
differentiate between the background and the foreground scene,
thus preventing it from growing wrong points to model the back-
ground. Doing so potentially improves the robustness of the point
cloud-guided NeRF model.

trees. We simultaneously build two K-D trees, one for each
point cloud. At each node, we select the same division axis
for the two point clouds, according to their union point set.
At each leaf node, we match a pair of single points from
each point cloud. Our algorithm aims to match points in
the two point clouds that have similar relative locations. In
an ideal case where there are numerous intermediate point
clouds and every adjacent pair of point clouds is sufficiently
close, this algorithm will lead to highly accurate matching
results.

I. Limitations

I.1. Point Cloud-Guided NeRF

Despite offering several advantages over traditional
NeRFs, the current point cloud-guided NeRF models, in-
cluding ours and PointNeRF, still have some limitations.
First, the scene is modeled with an explicit representa-
tion (the point cloud), which is not robust when model-
ing surfaces with complicated visual effects, e.g., a semi-
transparent blurry mirror. When the model fails to inter-
pret such visual effects, our point cloud optimization might
not generate correct points close to the surface, limiting the
model’s ability to improve results. Additionally, these mod-
els cannot well support strategies in NeRFReN [1] for si-
multaneously modeling the real-world scene and the mir-
rored scene to better handle mirror reflections. This is be-
cause a point cloud-guided NeRF model relies on MVS-
based initialization and point cloud optimization that cannot
accommodate such a form of co-optimization, which may
significantly change the shape of the mirrored scene during
training.

Another limitation of the point cloud-guided NeRF mod-
els is their non-robustness against inaccurate background

5

masks, as discussed in Section D. In the existing datasets, a
mask is often given to distinguish the foreground from the
background, so we only need to train NeRF on the fore-
ground. However, if the mask is not precise, some re-
gions of the background would be mistakenly included in
the mask, as in the case of the Tanks and Temples dataset
(e.g., the sky in the Caterpillar scene in Figure C). Since
a point cloud-guided NeRF model requires points to repre-
sent the entire scene including the background, it will try to
grow the points in those background regions and use them
to represent the background. On the other hand, the back-
ground regions can be far from the foreground, so the model
will grow the points near the scene object rather than their
true location. In normal situations, each point only repre-
sents a specific region of the scene. By contrast, for each of
these mistakenly grown points, its view-dependent color is
trained with different regions of the background which are
inconsistent, thus resulting in abnormal rendering results in
novel views.

To address this issue, we enhanced NeuralEditor by
modeling a background sphere that covers the entire scene.
Therefore, the point cloud-guided NeRF model can directly
represent the scene’s background using the sphere, instead
of growing new points. Such a strategy was introduced for
the Tanks and Temples dataset in Figure B. Figure C further
analyzes the impact of this background sphere, validating
its effectiveness in approximately modeling background re-
gions without growing wrong points. Further investigation
is worthwhile in other strategies to tackle this issue.

I.2. Environment Modeling in Shape Deformation
Task

Neither our work nor existing methods [5, 8, 9] take into
account the surrounding ambient environment when ad-
dressing the shape deformation task. These methods thus
cannot assign different colors to the scene according to the
changes in lighting conditions, as shown in the top of the
shovel and the bent chimney in the Lego scene and the
shadow on the cushion in the Chair scene (Figure G). For-
tunately, our NeuralEditor, incorporating the Phong reflec-
tion’s visual attributes (e.g., tint), enables fast fitting to the
ambient environment through fine-tuning on the deformed
scene (Section B).

I.3. Evaluation for Scene Morphing Task

Quantitatively evaluating the visual realism of interme-
diate scenes during morphing is challenging, due to the lack
of ground truth and associated metrics, as these scenes “do
not exist” in the real world. Therefore, we rely mainly on
visualizations for evaluation.

References
[1] Yuan-Chen Guo, Di Kang, Linchao Bao, Yu He, and Song-

Hai Zhang. NeRFReN: Neural radiance fields with reflec-
tions. In CVPR, 2022. 5

[2] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and Temples: Benchmarking large-scale
scene reconstruction. ACM Trans. Graph., 36(4), 2017. 2, 3

[3] Shitong Luo and Wei Hu. Diffusion probabilistic models for
3D point cloud generation. In CVPR, 2021. 5, 7

[4] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2, 8

[5] Yicong Peng, Yichao Yan, Shengqi Liu, Yuhao Cheng,
Shanyan Guan, Bowen Pan, Guangtao Zhai, and Xiaokang
Yang. CageNeRF: Cage-based neural radiance field for gen-
eralized 3D deformation and animation. In NeurIPS, 2022.
6

[6] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T. Barron, and Pratul P. Srinivasan. Ref-NeRF:
Structured view-dependent appearance for neural radiance
fields. In CVPR, 2022. 4

[7] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin
Shu, Kalyan Sunkavalli, and Ulrich Neumann. Point-NeRF:
Point-based neural radiance fields. In CVPR, 2021. 1, 2, 3,
7, 8

[8] Tianhan Xu and Tatsuya Harada. Deforming radiance fields
with cages. In ECCV, 2022. 1, 2, 6, 7, 8

[9] Yu-Jie Yuan, Yang tian Sun, Yu-Kun Lai, Yuewen Ma,
Rongfei Jia, and Lin Gao. NeRF-Editing: Geometry edit-
ing of neural radiance fields. In CVPR, 2022. 6

[10] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv:1801.09847,
2018. 5

6

Model Zero-Shot Inference Fine-Tune for 1 Epoch
Chair Hotdog Lego Drums Ficus Materials Mic Ship Chair Hotdog Lego Drums Ficus Materials Mic Ship

PSNR ↑
DeformingNeRF [8] 18.84 - 13.10 - - - - - - - - - - - - -
PointNeRF [7] 22.21 25.95 24.56 21.00 24.24 21.21 26.77 21.19 30.11 36.08 31.45 27.16 31.48 27.55 34.34 28.90
Naive Plotting 24.91 27.01 25.64 21.29 26.22 21.65 27.63 22.29 32.01 36.38 31.72 28.09 33.21 30.31 35.15 30.01
NeuralEditor w/o IST 24.92 27.02 25.65 21.29 26.24 21.64 27.64 22.28 32.24 36.69 32.79 28.30 33.34 30.40 35.28 30.08
NeuralEditor (Ours) 25.85 27.49 27.46 21.84 27.19 23.18 27.75 24.16 32.53 37.22 32.95 28.35 33.53 30.82 35.46 30.44

SSIM ↑
DeformingNeRF 0.865 - 0.645 - - - - - - - - - - - - -
PointNeRF 0.910 0.947 0.933 0.890 0.915 0.856 0.945 0.759 0.972 0.988 0.977 0.953 0.973 0.925 0.981 0.875
Naive Plotting 0.950 0.954 0.934 0.908 0.953 0.887 0.964 0.844 0.984 0.987 0.977 0.962 0.985 0.968 0.988 0.935
NeuralEditor w/o IST 0.950 0.954 0.934 0.908 0.953 0.887 0.964 0.845 0.984 0.988 0.982 0.963 0.985 0.968 0.988 0.936
NeuralEditor (Ours) 0.963 0.960 0.966 0.916 0.960 0.909 0.966 0.875 0.986 0.989 0.983 0.963 0.986 0.971 0.989 0.939

LPIPS AlexNet ↓
DeformingNeRF 0.071 - 0.297 - - - - - - - - - - - - -
PointNeRF 0.049 0.080 0.067 0.122 0.062 0.099 0.057 0.139 0.018 0.033 0.023 0.077 0.028 0.067 0.035 0.073
Naive Plotting 0.038 0.063 0.053 0.088 0.047 0.098 0.039 0.159 0.014 0.023 0.019 0.047 0.021 0.042 0.020 0.081
NeuralEditor w/o IST 0.037 0.062 0.052 0.087 0.046 0.097 0.039 0.158 0.013 0.021 0.015 0.046 0.020 0.041 0.019 0.080
NeuralEditor (Ours) 0.030 0.057 0.029 0.080 0.042 0.076 0.037 0.126 0.012 0.020 0.015 0.045 0.019 0.035 0.019 0.075

LPIPS VGG ↓
DeformingNeRF 0.067 - 0.291 - - - - - - - - - - - - -
PointNeRF 0.047 0.082 0.060 0.115 0.070 0.091 0.044 0.153 0.019 0.055 0.055 0.086 0.039 0.061 0.029 0.090
Naive Plotting 0.051 0.080 0.091 0.094 0.070 0.109 0.040 0.183 0.029 0.050 0.049 0.068 0.044 0.065 0.030 0.129
NeuralEditor w/o IST 0.051 0.079 0.088 0.093 0.069 0.107 0.040 0.182 0.027 0.048 0.043 0.066 0.042 0.064 0.029 0.127
NeuralEditor (Ours) 0.041 0.074 0.057 0.088 0.067 0.095 0.038 0.163 0.026 0.045 0.042 0.065 0.042 0.058 0.028 0.121

Table D. Full comparison results of Table 1 in the main paper under all metrics. NeuralEditor significantly and consistently outperforms
PointNeRF and Naive Plotting on all deformed scenes of NeRF Synthetic under all metrics, in both zero-shot inference and fine-tuning
settings. Our infinitesimal surface transformation (IST) effectively improves the results by correcting the view-dependent colors. With the
precise point cloud generated by NeuralEditor, even Naive Plotting consistently outperforms PointNeRF.

Figure D. Intermediate point clouds for the scene morphing task corresponding to Figure 9 in the main paper, which are generated by
the point cloud diffusion model [3].

7

Figure E. High-resolution version of Figure 6 in the main paper for more detailed visualization. NeuralEditor generates much more
precise point clouds than PointNeRF [7] in the four scenes of NeRF Synthetic [4]. The points are colored with their normal vectors.

Figure F. High-resolution version of Figure 7 in the main paper for more detailed visualization. With too coarse cages, Deforming-
NeRF [8] is unable to perform the deformation faithfully, leading to poor results.

8

Figure G. High-resolution version of Figure 8 in the main paper for more detailed visualization. NeuralEditor produces superior rendering
results to PointNeRF, with significantly fewer artifacts in zero-shot inference. Fine-tuning further improves the consistency of rendering
with the ambient environment. We use a black background for better visualization.

9

Figure H. High-resolution, extended version of Figure 9 in the main paper for more detailed visualization. Our NeuralEditor produces
smooth morphing results between Chair, Hotdog, Lego, and Mic in the NeRF Synthetic dataset, while PointNeRF produces results with
blurry textures, black shadows, and gloomy, non-smooth colors. The rendering results in the looped morphing process are arranged in the
shape of the numerical digit “3,” indicated by the dividing lines and arrows. For the baseline PointNeRF, in the main paper we showed the
morphing results between Chair and Hotdog due to limited space; here we include the full morphing results across all 4 scenes.

10

