Appendix
A. Supplementary Implementation Details

In this section, we first introduce the descriptions of
dataset we verified the effects of our pre-training scheme
on. Then, we elaborate on the details of the baseline mod-
els we used in our empirical studies. Finally, we detail the
specific configurations used in all of our experiments.

A.l. Datasets and metric

SUN RGB-D [51] is a challenging large-scale 3D indoor
dataset, consisting of 10,335 RGB-D images with labeled
3D bounding boxes for 37 categories. Depth images are
converted to point clouds using provided camera poses, and
we follow the standard 5285, 5050 splits for the training and
testing stages, respectively. We report the accuracy on the
test set of SUN RGB-D using the mean Average Precision
at two different IoU thresholds, 0.25 and 0.5, respectively.

ScanNetV?2 [9] is a 3D interior scene dataset with rich
annotations, consisting of 1513 indoor scenes and 18 ob-
ject classes. The labels include semantic labels, per-point
instances, 2D and 3D bounding boxes. For 3D object detec-
tion, we use the common metrics for evaluation [43], mea-
suring the mean Average Precision (mAP) under two IoU
thresholds of 0.25 and 0.5. For 2D detection, we follow [5]
to report the Average Precision (AP) under 0.5, 0.75, and
1.0.

KITTI [16] is a widely adopted outdoor 3D object de-
tection benchmark, consisting of 7481 training images and
7518 test images. To evaluate our approach, we follow
[66] and adopt the Average Precision (AP) of 3D bound-
ing boxes under three-level difficulties, easy, moderate and
hard. Detection scores for the car category under the
intersection-over-union (IoU) threshold of 0.7 are reported.

CIFAR-FS [4], FC100 [40], minilmageNet [55], are
widely used few-shot image classification datasets, and we
use these datasets to evaluate PIMAE’s image feature ex-
tractor. The top-1 accuracy under 5-way 1-shot and 5-way
5-shot settings on different datasets is adopted as the evalu-
ation metric.

A.2. Baseline Approaches

We evaluate our interactive multi-modal training pre-
training scheme by fine-tuning three state-of-the-art 3D ob-
ject detectors, and our baseline implementations rigorously
follow their publicly released codes.

3DETR [39] is a simple, end-to-end 3D detection
pipeline that does not require finely crafted 3D detec-
tion backbone. Instead, its versatile attention-based back-
bone maximally preserves the vanilla Transformer blocks to
reach comparable performance with CNN-based detectors.

Group-Free 3D [35] is another approach implementing
the Transformer models on 3D object detection task, using

Config Value
optimizer AdamW [28]
base Ir le-3
weight decay 0.05
batch size 256

Ir schedule cosine decay
warmup epochs 15
epoch 400
augmentation None

Table 8. Pre-training configuration.

both a well-designed query locations for objects and an en-
sembling of detection results. Unlike PointNet-based net-
works [44,45,49] that create a local grouping scheme for
each object candidate, Group-Free uses an attention mech-
anism on all the point cloud points.

DETR [5] is an end-to-end 2D object detection that uses
a Transformer architecture to force unique predictions with
bipartite matching. DETR can quickly and efficiently make
predictions of the relations between objects and the global
image context from a small set of object queries.

MonoDETR [66] is a novel, state-of-the-art DETR-
based model for monocular 3D detection that does not rely
on depth supervision, anchors, or Non-Maximum Suppres-
sion (NMS). It modifies DETR’s vanilla transformer to in-
corporate depth estimates and predicts 3D annotations from
the depth information inherent in images.

A.3. Pre-training Details

The encoder and decoder architectures in PIMAE fol-
low the standard ViT [10] design, which consists of several
Transformer blocks. In our PIMAE, the number of Trans-
former blocks for specific encoders and shared-decoders is
both set to 3, while the numbers for specific decoders and
shared-decoders are set to 2 and 1, respectively. For en-
coders, each Transformer block has 256 hidden dimensions
and 4 heads for the multi-head self-attention module. For
decoders, the numbers are adjusted to 192 and 3.

For the point cloud branch, we sample 2048 points from
each 3D scene in SUN RGB-D [51], following previous
work [64]. For the image branch, we adjust the resolution
of each image to 256 x 352, and we use a patch size of 16 to
patchify images. The specific configuration for pre-training
PiMAE is given in Tab. 8.

A.4. Fine-tuning Protocol on SUN RGB-D, Scan-
NetV2, and KITTI

For fine-tuning on GroupFree3D [35], we insert our 3D
feature extractor into the pipeline. TODO:inserted where?
Compared to the original configuration, the only modifica-
tion here is tuning the learning rate on the encoder lower



to lr = 3e — 5 to preserve the pre-trained prior. For detec-
tion on ScanNetV2, we lower the encoder learning rate to
lr = 6e — 5.

For experiments with 3DETR [39], our encoder consists
of six Transformer blocks pre-trained with PIMAE. The ex-
act setups as the original [39] are then used for fine-tuning,
except that we apply a reduced learning rate of [r = le — 5
to the encoder.

For DETR [5], we replace the vanilla Transformer en-
coder with our image branch feature extractor and our joint-
encoder pre-trained on SUN RGB-D. The depth of the en-
coder is unchanged and we only apply a reduced learning
rate of [r = le — 5 to the encoder. We perform 2D object
detection on the ScannetV?2 2D detection dataset.

For MonoDETR [66], we replace its depth encoder with
our 3-layer 3D feature extractor and follow the original con-
figuration for training.

B. Additional Ablation Study

In this section, we give more ablation studies for further
analysis of PIMAE.

Ablation study on Pipeline Architecture. During the
reconstruction stage, as proposed in Sec. 3.4, a shared de-
coder architecture is adopted. The encoded features are first
disentangled by the cross-modality decoder, and reconstruc-
tions are completed afterward with task-specific decoders.
From Tab. 9, we find the additional shared-decoder design
performance-enhancing, as it considers the cross-modal in-
fluence of masked tokens. Specifically, shared-decoder is a
novel contribution of PIMAE, and we find it non-trivial, be-
cause the interactions in the masked tokens improve feature
extraction.

Ablation Study on Masking Ratio. As reported in
Tab. 10, we examined several masking ratios for PIMAE
and find that the the model learns the best latent features
when the masking ratio is set to 60%.

C. Additional Visualization

Reconstruction Results. In Fig. 8. We provide more
examples of reconstruction visualizations. PIMAE simulta-
neously reconstructs masked point clouds and images with
clear reconstructions reflecting semantic understanding.

Activation of Feature Map. This section provides more
attention map examples generated by PiIMAE’s shared-
encoder, where features from the two modalities first in-
teract explicitly. By examining the self-attention weights,
we can gain better insights on PIMAE’s multi-modal inter-
actions. We compute the self-attention from a point cloud
token to all image tokens and show the attention values. In
Fig. 9, PIMAE is able to attend to more foreground objects
and with higher attention values, while other designs either
attend to unrelated backgrounds(e.g. row 3, col 4), or have

Encoder Decoder AP»s APs
3+3 0+3 58.0 30.2
343 1+2 59.4 33.2
3+3 1+3 58.1 32.8
242 1+2 57.5 30.8

Table 9. Ablation studies on model architecture. a+b in encoder
denotes specific encoders of a-layers ViT, and shared-encoder of b-
layers ViT. c+d in decoder denotes c-layers ViT for shared-decoder
and d-layers ViT for specific decoders. Experiments are based on
3DETR and performed on SUN RGB-D.

Mask Ratio ‘ AP25 AP50

50% 58.7 331
60% 594 332
70% 584  33.0
80% 575 324

Table 10. Ablation study on masking ratios. Experiments with
different masking ratio are conducted, and we report detection ac-
curacy based of 3DETR on SUN RGB-D val set.

rather low attention values (e.g. row 2, col 4).

We also compute the self-attention from a image token
to all point cloud tokens and display the attention weights.
As shown in Fig. 10, given a image token as query, PIMAE
accurately attends to the corresponding objects in the point
cloud with highest values, showing a strong understanding
of both 2D and 3D features.

Object Detection. We display more qualitative results
comparing PIMAE and baseline in Fig. 7. On top of
3DETR [39], with PIMAE pre-training, we are able to de-
tect more objects with more precise boxes.



Methods ‘bed table sofa chair toilet desk dresser nightstd bookshf bathtub‘ AP»s APsg

DSS [52] 788 503 535 612 789 205 6.4 15.4 11.9 44.2 42.1 -
2D-driven [30] 645 370 504 483 804 279 259 41.9 31.4 43.5 45.1 -
PointFusion [61] 686 310 538 551 838 172 23.9 323 37.7 37.3 45.4 -
F-PointNet [44] 81.1 51.1 61.1 642 909 247 32.0 58.1 333 433 54.0 -
VoteNet [43] 83.0 473 640 753 90.1 220 29.8 62.2 28.8 74.4 57.7 -
3DETR [39] 81.8 500 583 680 903 287 28.6 56.6 27.5 77.6 58.0 30.3
+Ours 854 489 625 69.0 938 282 33.0 62.8 30.4 80.3 59.4(+1.4) 33.2(+2.9)
GroupFree3D [35] | 87.8 53.8 70.0 794 91.1 32.6 36.0 66.7 325 80.0 63.0 452
+Ours 8.4 551 733 781 96.0 315 40.8 67.8 28.4 89.1 64.6(+1.6) 46.2(+1.0)

Table 11. 3D objection detection results on SUN RGB-D validation set. Single-class precision is reported with AP»5. Results of
previous methods are taken from [35,39,43].

Ground Truth

PiMAE

Ground Truth

Figure 7. Visualization of predictions on SUN RGB-D validation set. We correctly detect more objects.

Scene Input Masking Reconstruction Scene

Figure 8. Visualization of reconstruction results. Our model is trained with 60% masking ratio. Point clouds are colored for better
visualization purpose. PIMAE generalizes well for different scenes and reconstructs masked images (odd rows) and masked point clouds
(even rows) simultaneously.



Point Cloud Image PiIMAE w/o Shared w/o Complement w/o Cross-mf)dal
decoder masking reconstruction

Figure 9. Visualization of encoder attention, point cloud as query. The encoder’s attention between two modalities is visualized by
computing self-attention from the query points (orange circle) to all the visible image tokens. Highest values are shown in red. We show the
corresponding location (red square) of the query points after projection. From left to right shows ablation of PIMAE with different designs,
including our final proposal, and settings that exclude shared-decoder, complement masking strategy and cross-modal reconstruction,

respectively.

w/o Complement w/o Cross-modal
masking

Figure 10. Visualization of encoder attention, image as query. The encoder attention between the two modalities is visualized by
computing self-attention from the query of an image token (red square) to all the point cloud tokens. Highest values are shown in red. The
attention intensity in the point cloud corresponds with the image patch query, showing the effectiveness of our cross-modal interactions

during pre-training.
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