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A. Algorithm

We present the pseudocode of the warm-start steps of
our proposed method in Algorithm 1, where non-private
discriminators are pre-trained using different sub-sampled
datasets. The pre-trained discriminators are then loaded as
initialisations for the subsequent training of the private gen-
erator. This does not consume any privacy costs since it
is only the private generator that we would release after
training. Note that Algorithm 1 is kept identical to GS-
WGAN [2] for a fair comparison of methodologies.

Algorithm 1 DP-GAN-DPAC Warm-start

Input: Dataset D, subsampling rate γ, warm-start itera-
tions Tw, learning rates ηD and ηG, the number of iter-
ations per generator iteration for the discriminator ndis,
batch size B

Output: Non-private discriminator θk
D for k = 1, 2, ...,K

(K = 1/γ)
1: Subsample (without replacement) the dataset D into

subsets {Dk}Kk=1 with rate γ where K = 1/γ;
2: for k in {1, ...,K} in parallel do
3: Initialise non-private generator θk

G and non-private
discriminator θk

D

4: for step in {1, ..., Tw} do
5: for t in {1, ..., ndis} do
6: Sample batch {xi}Bi=1 ⊆ Dk;
7: Sample batch {zi}Bi=1 with zi ∼ Pz;
8: Compute mean discriminator gradient gD;
9: θk

D ← θk
D − ηD · gD;

10: end for
11: Compute mean generator gradient gG;
12: θk

G ← θk
G − ηG · gG;

13: end for
14: return Discriminator θk

D

15: end for

B. Hyperparameter Settings

For MNIST and Fashion MNIST, We adopt the same
hyper-parameter settings for components inherit from GS-
WGAN, such as the learning rate and optimiser for the gen-
erator and discriminator networks, the number of warm-
start iterations Tw = 2000, the number of discriminator it-
eration per update of generator: ndis = 5, the sub-sampling
rate γ = 1/1000, noise scale σ = 1.07, number of pri-
vate generator iterations T = 20000 upon exhausting all
privacy budget of ϵ = 10. On top of that, our use of
the dual-purpose auxiliary classifier and the deliberate de-
sign of its training process introduce some additional hyper-
parameters: the proportion of feedback allocated to discrim-
inator as opposed to classifier β = 0.8, the iteration to
launch classifier tc = 6000, and the number of iterations per
generator update for the classifier using fake data and real
data respectively nf = 10 and nr = 10. The architecture
and hyper-parameter settings for the auxiliary classification
network is identical to the discriminator, except that after
the final linear mapping, we have 10 outputs instead of 1
for the classifier since it conducts multi-class classifications
on these two datasets. Thus, to compute the Wasserstein
distance between the true class and the fake class, an extra
step is to compute the difference between the score of the
one output neuron that corresponds to the true class label,
and the mean score of the remaining 9 output neurons that
correspond to all other classes.

For CelebA, as there are 162770 examples in the training
set, we use sub-sampling rate of γ = 1/2543 to ensure each
sub-sample contains 64 examples, which is deliberately
chosen as powers of two and can then be easily randomly
divided into two batches of B = 32 non-overlapping ex-
amples during every epoch of each sub-sample. We choose
the noise scale to be σ = 0.61135 since under the current
settings of batch size and sub-sampling rate, σ = 0.61135
allows a privacy cost of 9.9993 to be consumed after exact
T = 20000 generator iterations, which is just within the

1



privacy budget of ϵ = 10. The warm-start (Appendix A) is
conducted for Tw = 12000 iterations for obtaining better
pre-trained discriminators. Also, since we generate con-
dition on gender, the classifier does binary classification
tasks in this scenario. The remaining settings are as follows:
ndis = 10, nf = 10, nr = 10, β = 0.8, and tc = 1000.

C. Additional Performance Comparisons for
Reversed Utility

In the paper, we have compared the reversed utility
(r2g%) of our method with GS-WGAN [2] as it is the back-
bone that we use to further introduce the dual-purpose aux-
iliary classifier. Comparisons with GS-WGAN [2] allow
clear demonstrations of the effectiveness of the auxiliary
classifier holding all remaining designs unchanged.

Here, we present additional performance comparisons
for the reversed utility (r2g%) of our method with other
two most promising baselines [1, 3] in addition to GS-
WGAN [2] in Tab. 1. The re-implementations of all base-
line methods are based on their officially released codes.
As shown in Tab. 1, our method consistently shows distinct
advantage over all baselines. Thus, our generated outputs
are most generalisable to the true features that distinguish
between their semantic classes. This allows our outputs to
be most difficult to tell from their real classes by real-world
classifiers.

MNIST F-MNIST
Method ↑ MLP CNN MLP CNN

DataLens [3] 0.39 0.47 0.44 0.48
DPSinkhorn [1] 0.98 0.99 0.79 0.86
GS-WGAN [2] 0.99 0.99 0.85 0.85
Ours 1.00 1.00 0.97 0.98

Table 1. Comparing real2gen accuracy ↑ on various datasets.

D. Trade-offs
In addition to comparing performances of each method’s

final checkpoint when all privacy budgets of ϵ = 10 are
consumed, we here present ongoing comparisons of per-
formances (quality, standard utility, and reversed utility)
over the baseline under a range of privacy budgets. This
demonstrates the consistency of our method’s obtaining
better privacy-quality and privacy-utility trade-offs. Note
that all comparisons for MNIST and Fashion MNIST start
from privacy budget of ϵ = 5.08, and from ϵ = 3.35 for
CelebA. This is due to the late launch of our auxiliary clas-
sifier, which is introduced into the pipeline from iteration
tc = 6000 (when ϵ = 5.08) for both MNIST and Fashion
MNIST; and from iteration tc = 1000 (when ϵ = 3.35)
for CelebA. All prior results are identical to those of GS-
WGAN [2] and are thus not included for comparisons.
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Figure 1. Comparing FID on F-MNIST
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Figure 2. Comparing FID on CelebA

D.1. Privacy vs. Quality

We show in Fig. 1, Fig. 2, and Fig. 3 that for a given
privacy budget, our method obtains better quality results
(lower FID) than the baseline, thus provides better privacy-
quality trade-offs. Comparing to the baseline, our results
demonstrate much more rapid accelerations of the decrease
of FID from the point that the dual-purpose auxiliary clas-
sifier is first introduced into the method design. Besides,
the advantage is particularly more obvious and consistent
for the more challenging datasets such as Fashion MNIST
(Fig. 1) and CelebA (Fig. 2). Image generation on MNIST
(Fig. 3) is a relatively easier task that the baseline can
also generate comparable high-quality outputs as measured
by FID, so we supplement the performance analyses on
MNIST by also providing another comparison using Incep-
tion Score (IS) as the metric. Fig. 4 shows that soon after
the introduction of our auxiliary classifier, the IS stabilises
at the highest possible level after an astonishing surge. The
advantage over baseline is obvious.
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Figure 3. Comparing FID on MNIST
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Figure 4. Comparing IS on MNIST

D.2. Privacy vs. Standard Utility

We show in Fig. 5, Fig. 6, and Fig. 7 that for a given
privacy budget, our method obtains better standard utility
results (higher g2r%) than the baseline, thus provides better
privacy-utility (standard) trade-offs. For Fashion MNIST
(Fig. 5), both methods illustrate increasing trend of the
g2r%, but our method shows more rapid and consistent
rises, compared to the baseline’s slow and fluctuating in-
creases. The results on CelebA (Fig. 6) are even more
obvious, where the baseline struggles to generate semanti-
cally meaningful outputs that could train a binary classifier
to demonstrate significant advantage over random guesses.
Our results are consistently better and reaches a g2r% of
0.85 upon exhausting all privacy budgets of ϵ = 10. Finally,
Fig. 7 shows our performance on g2r% is also distinctive for
easier generation task on MNIST.

D.3. Privacy vs. Reversed Utility

We also show in Fig. 8, Fig. 9, and Fig. 10 that for a
given privacy budget, our method obtains better reversed
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Figure 5. Comparing g2r% on F-MNIST
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Figure 6. Comparing g2r% on CelebA
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Figure 7. Comparing g2r% on MNIST

utility results (higher r2g%) than the baseline, thus provides
better privacy-utility (reversed) trade-offs. It is worth not-
ing that our method could reach and subsequently stay at a
real2gen accuracy (r2g%) of 1.00 or fractionally lower than
1.00 soon after the introduction of auxiliary dual-purpose
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Figure 8. Comparing r2g% on F-MNIST
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Figure 9. Comparing r2g% on CelebA

gen2real ↑ real2gen ↑
Method IS ↑ FID ↓ MLP CNN MLP CNN

Baseline 9.23 61.34 0.79 0.80 0.99 0.99
w/o g2r 9.73 58.34 0.84 0.84 1.00 1.00
w/o r2g 9.84 58.97 0.84 0.84 1.00 1.00
w/o seq 7.92 66.61 0.77 0.73 0.99 0.98
w/o init 9.91 64.84 0.82 0.81 1.00 1.00

Full 9.71 54.06 0.85 0.88 1.00 1.00

Table 2. Ablation studies on MNIST. Each sub-component of our
final design has demonstrated its expected effectiveness.

classifier for all three tested datasets. On the other hand,
the baseline could only approach our performance on the
relatively easier MNIST dataset (Fig. 10), while the gap is
biggest for the most challenging CelebA dataset (Fig. 9).
These have demonstrated the auxiliary classifier’s signifi-
cant contribution on the generated outputs’ generalisability.
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Figure 10. Comparing r2g% on MNIST

gen2real ↑ real2gen ↑
Method IS ↑ FID ↓ MLP CNN MLP CNN

Baseline 1.85 297.35 0.68 0.66 0.66 0.60
w/o g2r 1.80 136.68 0.78 0.82 0.99 0.97
w/o r2g 1.77 135.29 0.78 0.83 0.99 0.95
w/o seq 1.77 325.93 0.57 0.54 0.80 0.71
w/o init 1.96 133.00 0.70 0.74 0.99 0.98

Full 1.90 139.99 0.80 0.85 0.99 0.98

Table 3. Ablation studies on CelebA. Each sub-component of our
final design has demonstrated its expected effectiveness.

E. Ablation Studies on MNIST and CelebA
In addition to the ablation studies on Fashion MNIST in

the paper, here we present the studies on MNIST (Tab. 2)
and CelebA (Tab. 3). Each sub-component of our method
is designed for a clear purpose, i.e., to improve on quality,
or standard utility, or reversed utility. The ablation studies
on all three datasets have shown reasonable results to prove
their effectiveness.

For example, the auxiliary classifier is designed in
a dual-purpose way that incorporates both gen2real and
real2gen components. This is because we find learning
from both real and fake data sources would enable us to
feedback the generator with learning signals about the bi-
lateral transferability during training. This could further
improve on the g2r% and r2g% performances compared
to the single-purpose design that without either gen2real or
real2gen component. The effectiveness of the dual-purpose
design is proved in Tab. 2 and Tab. 3 where the full design
outperforms the “w/o g2r” and “w/o r2g” designs in terms
of g2r% and r2g% performances. The only “exception” is
that on MNIST, all three versions achieve the same r2g%
of 1.00 using either MLP or CNN as the classifier, due to
the simplicity of the task. It is also noteworthy that both
“w/o g2r” and “w/o r2g” designs outperforms the baselines
in terms of g2r% and r2g% for quite a margin, especially



on the more challenging CelebA dataset. This proves the
effectiveness of the auxiliary classifier in general.

In addition, the sequential training strategy for integrat-
ing the two data sources is extremely crucial to our method’s
success. This is because real and fake data are from very
different distributions and have quite distinct features for
each class label. Thus, mixing the losses from real and fake
sources into the same equation would result in noisy gradi-
ents that confuse the classifier during its updates. As shown
in Tab. 2 and Tab. 3, all metrics including the quality ones
and the utility ones experience a dramatic downgrade in per-
formance without this sequential training design.

Finally, as shown in Tab. 2 and Tab. 3, without the re-
initialisation steps, the g2r% performance decreases signif-
icantly for both datasets, while all remaining metrics: IS,
FID, and r2g% show comparable performances and are not
clearly impacted by the ablation of re-initialisation compo-
nent. This is reasonable because the re-initialisation of the
auxiliary classifier after each generator update is designed
to improve on the standard utility measured by g2r%, since
re-initialisation mimics the gen2real evaluation process, and
allows the classifier to be trained from scratch using the fake
data synthesised by the specific version of generator during
each iteration. Thus, the classifier is a better representa-
tive of the specific generator, and as a result, returns better
feedback back to the generator to improve on its g2r% per-
formance.

F. Additional experiments on CIFAR-10
We also conducted preliminary experiments on CIFAR-

10. The results (Tab. 4) were far from optimal, but had al-
ready shown clear improvements on the baseline [2]. Fur-
ther progresses might be made by employing more recent
GAN architectures. The current choices of DCGAN & Big-
GAN were inherited from previous work [2] for fair com-
parisons.

gen2real ↑ real2gen ↑
Method IS ↑ FID ↓ MLP CNN MLP CNN

GS-WGAN [2] 1.01 435.83 0.13 0.11 0.10 0.10
Ours 1.73 236.10 0.16 0.16 0.55 0.59

Table 4. CIFAR-10 Preliminary Results.

G. Effect of auxiliary classifier on DP mecha-
nism

We plotted the average gradient norm (before clipping)
for both our method and the baseline [2] that does not have
the auxiliary classifier.

Mσ,ζ(g) = Clip(g, ζ) +N (0, σ2ζ2I2). (1)

As in Eq. (1), the DP mechanism has two components that
greatly destroy gradient information during GAN training:

clipping and adding random noise. The clip bound ζ was
analytically determined to be 1 due to the use of WGAN-
GP softly regularise the gradient norms to be within one.
However, without auxiliary classifier, the optimised gradi-
ents from the discriminator converged very slow and were
consistently having norms above 1 as shown in Fig. 11.
With the auxiliary classifier, the combined gradients from
both networks converged much faster, and were consistently
having a smaller norm (mostly below 1), therefore clipping
destroyed significantly less gradient information.
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Figure 11. Average gradient norm (before clipping) for each pri-
vacy costs during the GAN training process on FashionMNIST.
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