
Run, Don’t Walk: Chasing Higher FLOPS for Faster Neural Networks
– Supplementary Material –

Jierun Chen1, Shiu-hong Kao1, Hao He1

Weipeng Zhuo1, Song Wen2, Chul-Ho Lee3, S.-H. Gary Chan1

1HKUST, 2Rutgers University, 3Texas State University

In this appendix, we provide further details on the exper-
imental settings, full comparison plots, architectural config-
urations, PConv implementations, comparisons with related
work, limitations, and future work.

A. ImageNet-1k experimental settings

We provide ImageNet-1k training and evaluation settings
in Tab. 6. They can be used for reproducing our main results
in Tab.3 and Fig.7. Different FasterNet variants vary in the
magnitude of regularization and augmentation techniques.
The magnitude increases as the model becomes larger to
alleviate overfitting and improve accuracy. Note that most
of the compared works in Tab.3 and Fig.7, e.g., Mobile-
ViT, EdgeNext, PVT, CycleMLP, ConvNeXt, Swin, etc.,
also adopt such advanced training techniques (ADT). Some
even heavily rely on the hyper-parameter search. For others
w/o ADT, i.e., ShuffleNetV2, MobileNetV2, and GhostNet,
though the comparison is not totally fair, we include them
for reference.

B. Downstream tasks experimental settings

For object detection and instance segmentation on the
COCO2017 dataset, we equip our FasterNet backbone with
the popular Mask R-CNN detector. We use ImageNet-1k
pre-trained weights to initialize the backbone and Xavier to
initialize the add-on layers. Detailed settings are summa-
rized in Tab. 7.

C. Full comparison plots on ImageNet-1k

Fig. 8 shows the full comparison plots on ImageNet-1k,
which is the extension of Fig.7 in the main paper with a
larger range of latency. Fig. 8 shows consistent results that
FasterNet strikes better trade-offs than others in balancing
accuracy and latency/throughput on GPU, CPU, and ARM
processors.

D. Detailed architectural configurations

We present the detailed architectural configurations
in Tab. 8. While different FasterNet variants share a unified
architecture, they vary in the network width (the number
of channels) and network depth (the number of FasterNet
blocks at each stage). The classifier at the end of the archi-
tecture is used for classification tasks but removed for other
downstream tasks.

E. More comparisons with related work

Improving FLOPS. There are a few other works [1, 11]
also looking into the FLOPS issue and trying to improve it.
They generally follow existing operators and try to find their
proper configurations, e.g., RepLKNet [1] simply increases
the kernel size while TRT-ViT [11] reorders different blocks
in the architecture. By contrast, this paper advances the field
by proposing a novel and efficient PConv, opening up new
directions and potentially larger room for FLOPS improve-
ment.

PConv vs. GConv. PConv is schematically equivalent
to a modified GConv [6] that operates on a single group and
leaves other groups untouched. Though simple, such a mod-
ification remains unexplored before. It’s also significant in
the sense that it prevents the operator from excessive mem-
ory access and is computationally more efficient. From the
perspective of low-rank approximations, PConv improves
GConv by further reducing the intra-filter redundancy be-
yond the inter-filter redundancy [4].

FasterNet vs. ConvNeXt. Our FasterNet appears sim-
ilar to ConvNeXt [9] after substituting DWConv with our
PConv. However, they are different in motivations. While
ConvNeXt searches for a better structure by trial and er-
ror, we append PWConv after PConv to better aggregate in-
formation from all channels. Moreover, ConvNeXt follows
ViT to use fewer activation functions, while we intention-
ally remove them from the middle of PConv and PWConv,
to minimize their error in approximating a regular Conv.

1

Variants T0 T1 T2 S M L

Train Res 192 for epoch 1∼280, 224 for epoch 281∼300
Test Res 224

Epochs 300
of forward pass 188k

Batch size 4096 4096 4096 4096 2048 2048
Optimizer AdamW
Momentum 0.9/0.999
LR 0.004 0.004 0.004 0.004 0.002 0.002
LR decay cosine
Weight decay 0.005 0.01 0.02 0.03 0.05 0.05
Warmup epochs 20
Warmup schedule linear

Label smoothing 0.1
Dropout ✗
Stoch. Depth ✗ 0.02 0.05 0.1 0.2 0.3
Repeated Aug ✗
Gradient Clip. ✗ ✗ ✗ ✗ 1 0.01

H. flip ✓
RRC ✓
Rand Augment ✗ 3/0.5 5/0.5 7/0.5 7/0.5 7/0.5
Auto Augment ✗
Mixup alpha 0.05 0.1 0.1 0.3 0.5 0.7
Cutmix alpha 1.0
Erasing prob. ✗
Color Jitter ✗
PCA lighting ✗

SWA ✗
EMA ✗

Layer scale ✗

CE loss ✓
BCE loss ✗

Mixed precision ✓

Test crop ratio 0.9

Top-1 acc. (%) 71.9 76.2 78.9 81.3 83.0 83.5

Table 6. ImageNet-1k training and evaluation settings for different
FasterNet variants.

Variants S M L

Train and test Res shorter side = 800, longer side ≤ 1333
Batch size 16 (2 on each GPU)
Optimizer AdamW
Train schedule 1× schedule (12 epochs)
Weight decay 0.0001
Warmup schedule linear
Warmup iterations 500
LR decay StepLR at epoch 8 and 11 with decay rate 0.1
LR 0.0002 0.0001 0.0001
Stoch. Depth 0.15 0.2 0.3

Table 7. Experimental settings of object detection and instance
segmentation on the COCO2017 dataset.

Other paradigms for efficient inference. Our work fo-
cuses on efficient network design, orthogonal to the other
paradigms, e.g., neural architecture search (NAS) [2], net-
work pruning [10], and knowledge distillation [5]. They
can be applied in this paper for better performance. How-
ever, we opt not to do so to keep our core idea centered and
to make the performance gain clear and fair.

Other partial/masked convolution works. There are
several works [3, 7, 8] sharing similar names with our
PConv. However, they differ a lot in objectives and meth-
ods. For example, they apply filters on partial pixels to
exclude invalid patches [8], enable self-supervised learn-
ing [3], or synthesize novel images [7], while we target at
the channel dimension for efficient inference.

F. Limitations and future work
We have demonstrated that PConv and FasterNet are fast

and effective, being competitive with existing operators and
networks. Yet there are some minor technical limitations of
this paper. For one thing, PConv is designed to apply a reg-
ular convolution on only a part of the input channels while
leaving the remaining ones untouched. Thus, the stride of
the partial convolution should always be 1, in order to align
the spatial resolution of the convolutional output and that
of the untouched channels. Note that it is still feasible to
down-sample the spatial resolution as there can be addi-
tional downsampling layers in the architecture. And for
another, our FasterNet is simply built upon convolutional
operators with a possibly limited receptive field. Future ef-
forts can be made to enlarge its receptive field and combine
it with other operators to pursue higher accuracy.

References
[1] Xiaohan Ding et al. Scaling up your kernels to 31x31: Re-

visiting large kernel design in cnns. In CVPR, 2022. 1
[2] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.

Neural architecture search: A survey. The Journal of Ma-
chine Learning Research, 20(1):1997–2017, 2019. 2

[3] Peng Gao, Teli Ma, Hongsheng Li, Jifeng Dai, and Yu Qiao.
Convmae: Masked convolution meets masked autoencoders.
arXiv preprint arXiv:2205.03892, 2022. 2

[4] Daniel Haase et al. Rethinking depthwise separable convo-
lutions: How intra-kernel correlations lead to improved mo-
bilenets. In CVPR, 2020. 1

[5] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015. 2

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25, 2012. 1

[7] Guilin Liu, Aysegul Dundar, Kevin J Shih, Ting-Chun Wang,
Fitsum A Reda, Karan Sapra, Zhiding Yu, Xiaodong Yang,

0 1000 2000 3000 4000 5000 6000 7000
Throughput on GPU (fps)

68

70

72

74

76

78

80

82

84

To
p-

1
A

cc
. (

%
)

FasterNet (ours)
ShuffleNetV2
GhostNet
MobileNetV2

EdgeNeXt
ResNet50
PoolFormer
MobileViT

CycleMLP
PVT
Swin
ConvNeXt

0 50 100 150 200 250 300 350
Latency on CPU (ms)

68

70

72

74

76

78

80

82

84

To
p-

1
A

cc
. (

%
)

FasterNet (ours)
ShuffleNetV2
GhostNet
MobileNetV2

EdgeNeXt
ResNet50
PoolFormer
MobileViT

CycleMLP
PVT
Swin
ConvNeXt

0 500 1000 1500 2000 2500 3000 3500
Latency on ARM (ms)

68

70

72

74

76

78

80

82

84

To
p-

1
A

cc
. (

%
)

FasterNet (ours)
ShuffleNetV2
GhostNet
MobileNetV2

EdgeNeXt
ResNet50
PoolFormer
MobileViT

CycleMLP
PVT
Swin
ConvNeXt

Figure 8. Comparison of FasterNet with state-of-the-art networks. FasterNet consistently achieves better accuracy-throughput (the top
plot) and accuracy-latency (the medium and bottom plots) trade-offs than others.

Andrew Tao, and Bryan Catanzaro. Partial convolution for
padding, inpainting, and image synthesis. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022. 2

[8] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang,
Andrew Tao, and Bryan Catanzaro. Image inpainting for ir-
regular holes using partial convolutions. In Proceedings of
the European conference on computer vision (ECCV), pages
85–100, 2018. 2

[9] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 11976–11986,

2022. 1
[10] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,

and Jan Kautz. Pruning convolutional neural networks for re-
source efficient inference. arXiv preprint arXiv:1611.06440,
2016. 2

[11] Xin Xia et al. Trt-vit: Tensorrt-oriented vision transformer.
arXiv preprint, 2022. 1

Name Output size Layer specification T0 T1 T2 S M L

Embedding h
4
× w

4

Conv 4 c 4,
BN # Channels c 40 64 96 128 144 192

Stage 1 h
4
× w

4


PConv 3 c 1 1/4,

Conv 1 2c 1,
BN, Acti,

Conv 1 c 1

× b1 # Blocks b1 1 1 1 1 3 3

Merging h
8
× w

8

Conv 2 2c 2,
BN # Channels 2c 80 128 192 256 288 384

Stage 2 h
8
× w

8


PConv 3 2c 1 1/4,

Conv 1 4c 1,
BN, Acti,

Conv 1 2c 1

× b2 # Blocks b2 2 2 2 2 4 4

Merging h
16

× w
16

Conv 2 4c 2,
BN # Channels 4c 160 256 384 512 576 768

Stage 3 h
16

× w
16


PConv 3 4c 1 1/4,

Conv 1 8c 1,
BN, Acti,

Conv 1 4c 1

× b3 # Blocks b3 8 8 8 13 18 18

Merging h
32

× w
32

Conv 2 8c 2,
BN # Channels 8c 320 512 768 1024 1152 1536

Stage 4 h
32

× w
32


PConv 3 8c 1 1/4,

Conv 1 16c 1,
BN, Acti,

Conv 1 8c 1

× b4 # Blocks b4 2 2 2 2 3 3

Classifier 1× 1

Global average pool,
Conv 1 1280 1,

Acti,
FC 1000

Acti GELU GELU ReLU ReLU ReLU ReLU

FLOPs (G) 0.34 0.85 1.90 4.55 8.72 15.49

Params (M) 3.9 7.6 15.0 31.1 53.5 93.4

Table 8. Configurations of different FasterNet variants. “Conv k c s” means a convolutional layer with the kernel size of k, the output
channels of c, and the stride of s. “PConv k c s r” means a partial convolution with an extra parameter, the partial ratio of r. “FC 1000”
means a fully connected layer with 1000 output channels. h×w is the input size while bi is the number of FasterNet blocks at stage i. The
FLOPs are calculated given the input size of 224× 224.

	Appendix
	. ImageNet-1k experimental settings
	. Downstream tasks experimental settings
	. Full comparison plots on ImageNet-1k
	. Detailed architectural configurations
	. More comparisons with related work
	. Limitations and future work

