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A. Additional results

Additional results on O365 and OID. In Sec 4.3 Table
4, we follow the evaluation of Detic [6] and provide re-
sults on two training datasets: LVIS and COCO. As Detic is
trained with text embeddings, it can also be tested on other
datasets. In Table A, we compare ScaleDet and Detic on
two additional datasets: Objects365 (O365), OpenImages
(OID), along with LVIS and COCO, where both models
use Swin-Base Transformer as backbone. For Detic, we use
the best model “Detic C2 SwinB 896 4x IN-21K+COCO”
from the Detic model zoo1. For ScaleDet, we use our best
model in Table 2 in Sec 4.2. In Table A, it can be seen
that our ScaleDet surpasses Detic with substantial margins,
improving the mAP over all datasets from 42.7 to 56.6.

Model LVIS COCO OID O365 mAP

Detic-B [6] 44.3 50.1 21.6 54.6 42.7
ScaleDet-B 50.7 55.4 43.8 76.2 56.5
ScaleDet-B∗ 50.6 58.8 46.8 75.9 58.0

Table A. Comparison to Detic [6] on multi-dataset training us-
ing the best models from both papers. B: using Swin-Base Trans-
former as backbone. ∗: model is further fine-tuned on each dataset
after multi-dataset training. mAP is the mean AP over all datasets.

Results of individual datasets on ODinW. In Table D,
we provide the results on “Object Detection in the Wild”
benchmark, which reports the mAP on individual datasets:
AerialDrone, Aquarium, Rabbits, EgoHands, Mushrooms,
Packages, PascalVOC, pistols, pothole, Raccoon, Shellfish,
Thermal, Vehicles, as well as the mAP over 13 datasets.
Qualitative results. Due to space limit in our manuscript,
we provide additional qualitative results on upstream and
downstream datasets in Figure A and Figure B respectively.

B. Implementation details

Dataset details. We provide the licenses and websites of
upstream and downstream datasets in Table B and Table E.
Unseen class labels in Figure 3 in Sec 4.2 are 12 class labels
in downstream datasets: dock, jetski, lift, jellyfish, stingray,

1https : / / github . com / facebookresearch / Detic /
blob/main/docs/MODEL_ZOO.md

Dataset Website

LVIS https://www.lvisdataset.org
COCO http://cocodataset.org
Objects365 https://www.objects365.org
OpenImages https://storage.googleapis.com/openimages/web/index.html

Table B. Dataset details on 4 upstream datasets. All datasets are
under the “CC BY 4.0” license.

Model Dataset(s) Iterations batch size learning rate

baseline

L 90k 64 0.0002
C 90k 64 0.0002
O365 540k 64 0.0002
OID 540k 64 0.0002

ScaleDet
L,C 90k 64 0.0002
L,C,O365 400k 128 0.0002
L,C,O365,OID 750k 128 0.0002

Table C. Learning schedules on different setups.
CoW, chanterelle, aeroplane, diningtable, motorbike, pot-
tedplant, tvmonitor – which are not in upstream datasets.
Training details. We provide our pseudo code in Algorithm
A. We will release our pre-trained model weights if our pa-
per is accepted. Our codebase is proprietary, so we could
not provide it in supplementary materials. Similar to most
state-of-the-art detectors, our implementation is built upon
Detectron2 [4], so it is easy to reproduce our results based
upon the codebase. In Eq. (8), we set the hyperparameter λ
to 10 based on validation set. For the text encoder, we use
“ViT-B/32” in CLIP [3]2 or “ViT-H/14” in OpenCLIP [1]3.

We detail the learning schedules in Sec 4.2 in the follow-
ing for reproducibility. For Table 1, the learning schedules
are in Table C. For Table 2, 4, 5, 6, 7, 8, the learning sched-
ules are the same as the ones trained on the same datasets in
Table C. For Table 3, we follow the same learning schedule
as UniDet [7] to train on three datasets for fair comparison.
Complexity analysis. The label space of ScaleDet is com-
puted before training and does not require additional com-
putation cost for training. Compared to a standard detec-
tor using one loss for classification, ScaleDet uses two loss
terms (Eq. (6), Eq. (7)) for classification. Eq. (6) has
the same computation cost as standard classification loss,
Eq. (7) introduces small computation cost with complexity
O(N), proportional to the batch size. At test time, the com-
putation cost of ScaleDet is the same as a standard detector.

2https://github.com/openai/CLIP
3https://github.com/mlfoundations/open_clip
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Model Model Type #Data AerialDrone Aquarium Rabbits EgoHands Mushrooms Packages PascalVOC pistols pothole Raccoon Shellfish Thermal Vehicles mAP

GLIP-T [2] detection +
understanding

5.5M 31.2 52.5 70.8 78.7 88.1 75.6 62.3 71.2 58.7 61.4 51.4 76.7 65.3 64.9
GLIPv2-T [5] 5.5M 30.2 52.5 74.8 80.0 88.1 74.3 66.4 73.0 60.1 63.7 54.4 63.0 83.5 66.5
GLIPv2-B [5] 20.5M 32.6 57.5 73.6 80.0 88.1 74.9 71.1 76.5 58.7 68.2 70.6 79.6 71.2 69.4

Detic-R [6] detection +
classification

12.6M 43.1 49.5 72.2 78.0 91.0 70.0 49.1 99.9 45.8 66.2 38.0 82.3 52.4 64.4
Detic-B [6] 12.6M 44.3 51.9 76.2 78.2 89.8 75.1 96.4 99.9 50.7 64.3 47.6 82.4 54.4 70.1

ScaleDet-R
detection

3.6M 42.6 49.2 72.3 78.1 89.8 75.7 91.8 99.9 47.4 67.5 40.0 82.1 54.5 68.5
ScaleDet-T 3.6M 46.0 52.1 73.1 79.2 91.6 76.5 95.1 99.9 50.1 65.6 47.8 83.1 54.7 70.4
ScaleDet-B 3.6M 44.8 53.5 75.1 78.4 91.0 76.5 95.7 99.9 51.7 67.6 55.0 83.4 60.7 71.8

Table D. Results of fine-tune transfer on 13 individual datasets on ODinW. R, T, B: ResNet50, Swin-Tiny, Swin-Base Transformer as
backbone. Metric: mAP over 13 datasets. Note: “understanding”, “classification” mean training with vision-and-language understanding,
and classification datasets besides detection data.

Figure A. Qualitative results testing example images on upstream datasets: LVIS, COCO, Objects365 and OpenImages. It can be seen
that on the same image (in column 1 and 2), the model can detect different classes. In different columns, the model is evaluated by setting
the classifier to recognize a certain set of class labels from one dataset at test time.

Figure B. Qualitative results testing example images on downstream datasets: AerialDrone, Aquarium, Rabbits, EgoHands, Mush-
rooms, Packages, PascalVOC, pistols, pothole, Raccoon, Shellfish, Thermal, Vehicles.



Dataset License Website

AerialMaritimeDrone MIT https://public.roboflow.com/object-detection/aerial-maritime
Aquarium CC BY 4.0 https://public.roboflow.com/object-detection/aquarium
CottontailRabbits CC BY 4.0 https://public.roboflow.com/object-detection/cottontail-rabbits-video-dataset
EgoHands CC BY 4.0 https://public.roboflow.com/object-detection/hands
NorthAmericaMushrooms Public Domain https://public.roboflow.com/object-detection/na-mushrooms
Packages Public Domain https://public.roboflow.com/object-detection/packages-dataset
PascalVOC CC BY 4.0 https://public.roboflow.com/object-detection/pascal-voc-2012
pistols Public Domain https://public.roboflow.com/object-detection/pistols
pothole ODbL v1.0 https://public.roboflow.com/object-detection/pothole
Raccoon MIT https://public.roboflow.com/object-detection/raccoon
ShellfishOpenImages CC BY 4.0 https://public.roboflow.com/object-detection/shellfish-openimages
thermalDogsAndPeople Public Domain https://public.roboflow.com/object-detection/thermal-dogs-and-people
VehiclesOpenImages CC BY 4.0 https://public.roboflow.com/object-detection/vehicles-openimages

Table E. Dataset details on 13 downstream datasets from “Object Detection in the Wild” (ODinW-13) benchmark.

Algorithm A Scalable multi-dataset training recipe for object detection
Required: Datasets D1, D2, ..., DK and their concatenated label spaces L = L1⊕L2⊕ ...⊕LK , which gives n class labels:
{l1, l2, ..., ln}.
Required: Text encoder from pre-trained CLIP [3] or OpenCLIP [1]. Compute the text embedding for each label with prompt
engineering4 which gives n text embeddings: {t1, t2, ..., tn} for the corresponding labels {l1, l2, ..., ln}.
Required: An object detector θdetector for training.

for i← 1 to n do
for j ← 1 to n do

cos(ti, tj) =
ti·tj

||ti||||tj || ▷ Compute cosine similarity for text embeddings ti, tj
end for
αi = min{cos(ti, tj)}nj=1, βi = max{cos(ti, tj)}nj=1 = cos(ti, ti) = 1 ▷ Compute normalization factors

si = sim(li, lj) =
cos(ti,tj)−αi

βi−αi
▷ Normalize the similarity score within 0 and 1

end for
Input: A mini-batch of images [I1, I2, ..., IB ], text embeddings [t1, t2, ..., tB ] that represent their class labels [y1, y2, ..., yB ].

1: for b← 1 to B do
2: {v1, v2, ..., vj} = θdetector(Ib) ▷ Obtain visual features from the detector for image Ib
3: for i← 1 to j do
4: ci = [cos(vi, t1), cos(vi, t2), ..., cos(vi, tn)] ▷ Compute the visual-langague similarities: Eq. (5)
5: Lhl = BCE(σsg(ci/τ), li) ▷ Compute the hard label assignment loss: Eq. (6)
6: Lsl = MSE(ci, si) ▷ Compute the soft label assignment loss: Eq. (6)
7: Llang = Lhl + λLsl ▷ Compute the learning objective on visual feature vi: Eq. (7)
8: end for
9: Backward propagation on the detector θdetector(·) with the overall loss on all visual features {v1, v2, ..., vj}

10: end for
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