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Supplementary Material

This paper supplements our main manuscript with the title TexPose: Neural Texture Learning for Self-Supervised 6D
Object Pose Estimation. We first present all details about our employed NeRF architecture for texture learning, as well as

the uncertainty-aware image reconstruction loss from Section B, which is extended from Section 3.2 in the main paper. In

Section C, we further discuss the implementation details of the texture learner, pose estimator, etc. We also provide additional

quantitative results, an ablative study, and qualitative results in Section D, Section E, and Section F, respectively.

A. Volume Rendering Formulation
The rendering formulation for colour, depth, and mask used in our work is given as:

C(r) =

K∑

k=1

αk(1− wk)ck, D(r) =

K∑

k=1

αk(1− wk)tk, M(r) =

K∑

k=1

αk(1− wk). (8)

B. Erec for Texture Learning
After acquiring density and geometric features [σs, γ] = hσ(x), we feed the geometric features γ, together with view

directions d, per-view lighting embedding τa and per-view transient embedding τ t to the static branch hs
c and the transient

branch ht
c to obtain the respective static colour cs, transient colour ct, transient density σt and uncertainty estimate μ̂, with

cs = hs
c(γ, τ

a,d), [ct, σt, μ̂] = ht
c(γ, τ

t). Eqn. 3 is therefore reformulated as C(r) =
∑K

k=1 αk((1−ws
k)c

s
k + (1−wt

k)c
t
k),

with αk =
∏k−1

j=1 w
s
jw

t
j , ws

k = exp(−δkσ
s
k), and wt

k = exp(−δkσ
t
k). To obtain the integrated uncertainty μ(r), we again

integrate over all predicted uncertainty estimates μ̂ from the transient branch along the given ray following Eqn. 3 with

integration element modified to μ̂. Note that we only consider rays belonging to the foreground mask M(r). Formally, the full

image reconstruction loss Erec for each ray r from the sampled patch is defined as:

Erec(r) =
M(r)‖C(r)− Ĉ(r)‖22

2μ(r)2
+

logμ(r)2

2
+

λt

K

K∑

k=1

σt
k (9)

where λt is a balancing factor which regularises the amount of transient geometry.

C. Implementation Details
Experimental setup. Our full pipeline is implemented in PyTorch [12]. We conduct all experiments on a single NVIDIA

RTX-3070 GPU.

Geometric pretraining. In the geometry pretraining phase, we adopt vanilla NeRF as proposed in [11]. Thereby, we

employ a positional encoding having a bandwidth of 10 for each input point x ∈ R
3 . The geometry branch hσ consists 8

fully-connected layers with a hidden dimension of 256 to predict density and extract geometric features. Afterwards, another

4-layer MLP with hidden dimension of 256 is leveraged to transform the geometric features to colour radiance hc. Note

that we do not use any view-dependence information at this stage. We constraint the bound for ray sampling using the 3D

bounding box of the given object, which can be efficiently computed via AABB ray intersection tests [9]. We then sample 64

points along each ray for numerical quadrature approximation. We train NeRF model for 50k iterations using the ADAM

optimiser [4] with an initial learning rate of 5× 10−4 and an exponential decay factor of 0.999.
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Texture learning. During texture learning, we leverage the pretrained geometry branch and freeze all parameters before

re-training a new texture radiance branch, allowing view-dependent information. To this end, we employ a positional encoding

with a bandwidth of 4 to encode the ray direction d. Further, static branch hs
c as well as transient branch ht

c are based on a

4-layer MLP having hidden dimension of 256. The lighting embedding τa and τ t are learnable parameters of dimension 48

and 16, respectively. For points sampling, we first enlarge the 3D bounding box, as constructed by the estimated pose, by a

factor of 0.25 in an effort to compensate for pose errors during ray sampling. Our discriminator used in Eadv follows [14].

We utilise the ADAM optimiser with an initial learning rate of 1 × 10−3 and an exponential decay factor of 0.999 [4]

for training of our NeRF models, while we leverage RMSProp [5] with a constant learning rate of 1 × 10−4 to train the

discriminator. We optimise all parameters except for the pretrained geometry branch hσ for 40K iterations.

Pose estimator pretraining. For a fair comparison, we employ the same object detector and 6D pose estimator as the recent

state-of-the-art method Self6D++ [16] 1. Specifically, the object detector is built based on Yolov4 [1] to localise the object of

interest, and the pose estimator, GDR-Net, is a direct regression-based pose estimation method utilising dense correspondence

as intermediate representation for better regression guidance [17]. For implementation details, we kindly refer the readers to

the original paper [1,16,17]. As the predicted mask provided by GDR-Net works with low resolution, we therefore additionally

train a segmentation network for each object at resolution 128× 128px. Segmentation network is built based on U-Net [13]

with ResNet-34 [2] employed as backbone. We train the segmentation network on synthetic BOP training data as the pose

estimator for 40 epochs with batch size 12 and constant learning rate 3× 10−5.

Novel view synthesis & pose learning. Training samples synthesised from novel views are required to supervise the pose

estimator. For the LineMOD dataset, as we already utilise the training split to learn the pseudo textures, to avoid synthesising

at close viewpoints for texture learning, we hence uniformly sample the poses from the half-sphere above the object with three

levels of radius (700, 800, 900 mm) following [3]. In-plane rotations around z-axis of camera between -45°and 45°with a

step size of 15°are additionally added. During rendering, we set transient embedding as zero and randomly sample lighting

embedding among 3 closest training samples based on rotation distance. Note that we only leverage images from LineMOD to

learn the pseudo textures to demonstrate our good generalisation ability after self-supervision. Our data synthesis process is

speedy as we only need to render rays belonging to the object foreground mask, which can be instantly pre-rendered with

CAD model through rasterization.

With the generated dataset, we finetune the pretrained pose estimator with a batch size of 6 for another 50 epochs with

Ranger optimiser [7] as original GDR-Net [17] implementation. The initial learning rate is set to 3× 10−5 and annealed at

the 72% of the training phase with cosine schedule [8]. We also pad random image backgrounds with a probability of 0.9 to

increase domain invariance.

Hyperparameters choice. All loss weighting factors, λm, λd, λt, λfg, λadv and λreg are set to 0.1, 0.1, 0.01, 5, 0.1 and

0.01, respectively.

D. Additional Quantitative Results
Performance on YCB-Video. We additionally report results from 5 objects from YCB-video dataset w.r.t AUC of ADD-S

and AUC of ADD(-S) in the Table 4. The performance boost yield around 2% and 4% for the two metrics, respectively, which

is less significant compared with LineMOD and Occluded LineMOD. We attribute this result to the fact that the pretrained

pose estimators already perform well on the testing split, which is potentially due to the much richer texture pattern possessed

by the objects from YCB-video.

Performance on LineMOD tested with DPODv2 [15]. To demonstrate that our self-supervision pipeline is method-agnostic,

we also validate its effectiveness with another recent state-of-the-art correspondence-based pose estimator, DPODv2 [15], that

is highly different with GDR-Net [17] used in our main paper. Specifically, it first predicts dense normalised object coordinates,

then leverages RANSAC&PnP paradigm to solve for pose. As in Table 5, we validate the self-supervision performance with six

worst performing objects reported by [15]. DPODv2-LB and DPODv2-UB correspond to the performance of DPODv2 pose

estimators, respectively supervised with synthetic data and real data, which are reflecting the lower and upper performance

bound. Impressively, we again achieve superior performance by improving lower bound performance from 62.1% to 81.6%

1We took the pretrained weights for the object detector and 6D pose estimator from the official repository of Self6D++ [16]
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Table 4. Evaluation results on Occluded YCB-Video dataset.

Syn Syn + Self Syn + Real

Metric AUC/ADD-S AUC/ADD(-S) AUC/ADD-S AUC/ADD(-S) AUC/ADD-S AUC/ADD(-S)

006_mustard_bottle 97.5 91.9 96.3 99.5 100.0 94.7
007_tuna_fish_can 96.0 86.7 97.3 89.3 99.9 97

021_bleach_cleanser 90.5 80.0 89.5 80.3 91.2 81.9
035_power_drill 94.7 84.6 96.0 88.3 99.7 93.6

040_large_marker 82.9 70.5 88.2 77.3 93 81.7

Average 92.3 82.7 93.4 86.9 96.7 89.7

after self-supervision, and it is on-par with the fully-supervised model (DPODv2-UB). Such result suggests that our proposed

pipeline has high potential to be deployed as a general self-supervision pipeline to adapt various pose estimators to the real

world after synthetic pretraining.

Table 5. Evaluation results on partial objects from LineMOD dataset tested with our re-implementation of DPODv2 [15] pose estimator.

Results of DPODv2-LB and DPODv2-UB are slightly different from the original paper.

Methods Ape B.vise Cat Duck Holep. Phone Average

DPODv2-LB 59.7 85.0 79.3 51.2 28.1 69.7 62.1
DPODv2-Self Sup. 77.8 98.4 90.6 72.9 64.4 85.6 81.6

DPODv2-UB 80.1 97.6 95.1 80.5 75.5 96.5 87.5

E. Additional Ablation Study
Analysis of optimisation design. In Table 6, we provide more detailed discussion of the impact of each component of Eqn.

1 and Eqn. 2, result of more ablative experiments is shown in Table. 6 (variant M1 - M7). M1 and M2 correspond to the

accuracy of pretrained pose estimator and optimised results (produced by deep pose refiner used in [16]), respectively. M3

and M7 are results of the best model derived from Eqn. 1 (Self6D++ [16]) and from Eqn. 2 (ours). Eqn. 1.1 and Eqn. 2.2

correspond to the first term of Eqn. 1 (pose optimisation) and the second term of Eqn. 2 (supervision by synthesised data),

respectively. Hence, M4 is pose estimator supervised by real data with optimised labels (from M2) and CAD renderings with

GT labels. For M5, we first supervise texture learner with optimised labels (from M2), then provide neural renderings with GT

labels for pose estimator supervision. For M6, we also provide two data streams for supervision as M4, while we replace CAD

renderings with neural renderings. For performance of M4, we observe it is on-par with M3 without any supervision from

CAD renderings, suggesting GT labels are not the key factor for self-supervision if realistic appearance is not captured. In

contrast, only when feeding neural renderings for supervision (M5, M6, M7) can significant performance gain be acquired.

This further strengthens the argument that both realistic appearance and GT labels are essential for learning. Interestingly,

we notice nearly no improvements for overall performance (1% at most) when feeding optimised pose to supervise texture

learner (M5, M6). We explain it because when not feeding optimised labels to supervise texture learner (M7), performance of

majority of the objects are already comparable or even better to that of optimised labels (except for phone). We can therefore

only observe minor fluctuation of accuracy for objects like ape, cat, and duck, while significant improvement for object like

phone with more precise supervision (from 64.3% to 94.8%). Meanwhile, when combining Eqn. 1 and Eqn. 2 for supervision

(M6), we see obvious decrease and increase of accuracy for holep. and phone, respectively, compared to M7. This is as

expected because the quality of "optimised" pose (M2) can cast a strong impact on the final performance. However, though not

comparable to M5 and M7, the holep. can still acquire remarkable boost compared to M1 with even worse performance. We

attribute this to the supervision from the neural renderings. All results further suggest that our formulation (M7) allows for

more robust and lightweight self-supervision process as it requires no effort to prepare additional signals for self-supervision,

and in consequence the final performance can hardly be constrained by these external factors.

Necessity of geometric pretraining. We detail the necessity of geometric pretraining for self-supervision. As shown in the

main paper. This step is designed on purpose as we need to ensure the coordinate system of the learnt NeRF representation

is strictly aligned with the provided CAD model (i.e. object-centric) so as to acquire pixel-perfect data for supervision. We

provide ablative experiments in Table 7 of model variant without geometric pretraining (w/o GP). This variant leads to even

worse performance than model without any self-supervision (w/o self-sup). This result further strengthens our argument that
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Table 6. Ablation study of the individual effect of each component from Eqn.1 and Eqn.2 on partial objects. *: objects with symmetry.

Variant Objective Ape Cat Duck Glue* Holep. Phone Average

M1 w/o self-sup 50.9 79.9 24.6 81.2 41.9 64.3 57.1
M2 Optimised Pose 85.8 91.5 61.9 93.3 32.1 94.8 76.5

M3 Eqn. 1 (Self6D++) 76.0 85.6 56.5 92.2 35.4 91.8 72.9
M4 Eqn. 1 + Eqn. 2.2 64.5 91.1 52.1 96.8 43.7 84.7 72.1
M5 Eqn. 2 + Eqn. 1.1 81.7 95.5 79.6 94.5 75.9 87.3 85.7
M6 Eqn. 1 + Eqn. 2 81.5 95.8 78.2 98.1 67.9 90.7 85.3
M7 Eqn. 2 (Ours) 80.9 92.6 83.4 93.4 79.3 78.9 84.7

arbitrary coordinate system can be problematic for supervision, which is usually overlooked in previous works for novel view

synthesis as their main goal is to enhance photorealism [6, 10, 18, 19]. So it’s highly necessary to split geometry and texture

learning to ensure perfection of the synthesised data for supervision.

Table 7. Ablation study of the necessity of geometric pretraining (GP) on partial objects. *: objects with symmetry.

Training strategy Ape Cat Duck Glue* Holep. Phone Average

w/o self-sup 50.9 79.9 24.6 81.2 41.9 64.3 57.1
w/o GP 25.1 73.1 45.7 71.4 27.8 69.4 52.1

w/ GP (Ours Full) 80.9 92.6 83.4 93.4 79.3 78.9 84.7

Impact of additional loops. We conduct ablative experiments to study how many loops of optimisation alternating between

texture learner and pose estimator yielding the optimal performance. We therefore keep training texture leaner for 20K steps

with updated pose after the first loop, and utilise the synthesised dataset to further supervise the pose estimator for another

10 epochs. Surprisingly, As in Table 8, we observe a significant 27.6% absolute improvement on ADD(-S) score after only

one loop. We attribute this to the pixel-perfect supervision nature of the texture learner, its strong ability to mitigate pose

errors, and coarsely initialised pose estimate after synthetic pretraining, which greatly helps the convergence with only one

optimisation step. Nonetheless, we see that adding more loops can only bring insignificant improvement with 0.2% overall,

suggesting the performance is saturated in optimum already. We hence decide to optimise our full pipeline in an one-shot

fashion for the sake of performance and efficiency.

Table 8. Ablation study of number of iterations on partial objects. *: objects with symmetry.

# Iterations Ape Cat Duck Glue* Holep. Phone Average

w/o self-sup 50.9 79.9 24.6 81.2 41.9 64.3 57.1
1 80.9 92.6 83.4 93.4 79.3 78.9 84.7
2 77.9 93.7 83.6 95.0 76.0 83.3 84.9

Impact of pose noise in texture learning. In Table 9, we follow the same setup as Table 8 and perturb the input pose

estimates (57.1%) for the texture learner in the 1st iteration (Iter.1). Additive Gaussian noise with different standard deviation

σ in se(3) is applied, leading to degraded ADD-S scores (24.9%,13.8%,7.9%). The pretrained pose estimator is shared among

all variants to see if it can still be boosted even when a poorly initialised texture learner synthesises the train data. After Iter.1,

we observe that the pose estimator is moderately improving (57.1% to 68.2% and 60.8%) for the less noisy variants (σ ≤ 0.35)

while experiencing a drop for the highest level of noise (σ = 0.45). Note that after the 2nd iteration, all three noisy variants

reach comparable performance, similar to the optimal initialisation ("No noise" baseline), and start converging towards the

3rd iteration. To summarise, the weaker the texture leaner is initialised, the more iterations are required to converge to SotA

results. Interestingly, our model converges regardless of the noise level, reflecting the robustness of the texture learner. We

explain the behaviours above as follows:
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(1) The geometric branch of our texture learner is pretrained with perfect synthetic data and fixed when learning realistic

appearance, thus, its coordinate system and geometry are well aligned with the CAD model under any pose noise. (2) Aside

from our proposed robust loss, multi-view supervision for the texture learner also helps mitigate wrong information through

enforced view consistency.

Table 9. Impact of initial pose noise, showing the accuracy of input pose for texture learner and output pose from pose estimator.

Pretrained pose estimator 57.1

Input pose noise for texture learner in Iter. 1 No noise σ = 0.25 σ = 0.35 σ = 0.45
Iter.1 Texture learner 57.1 24.9 13.8 7.9

Pose estimator 84.7 68.2 60.8 55.7

Iter.2 Texture learner 84.7 68.2 60.8 55.7

Pose estimator 84.9 81.9 79.5 79.3

Iter.3 Texture learner - 81.9 79.5 79.3

Pose estimator - 83.5 82.6 79.9

F. Additional Qualitative Results

w/o w/ Pose Error
Figure 4. Effect of Ereg . We visualise the back-projected depth rendered with the given pose. The green, red, and blue clouds depict

ground-truth pose as well as estimated pose without and with Ereg , respectively.

Strategy-level difference Fig. 5 provides a qualitative example to highlight the difference between Eqn.1 (render-and-
compare) with 2D information and Eqn.2 (ours). As shown in Fig. 5 (a), when the object exhibits a distinctive appearance,
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(a) (b) (c)

Figure 5. The green, red, and blue silhouettes depict ground-truth pose and optimised results using Eqn.1 and Eqn.2 (ours).

using Eqn.1 to refine the pose could be as accurate as ours. However, Eqn.1 tends to fail when the 2D information is less

informative (Fig. 5 (b)). Our strategy (Eqn.2) synthesises uniformly distributed data, also covering such challenging viewpoints,

to supervise the pose estimator (e.g., Fig. 5 (c)).

Impact of Ereg . We visualise the impact of Ereg in Fig. 4 for more intuitive understanding of the synthetic regularisation we

introduced in Section 3.2. We first use pretrained pose estimator to infer the pose of the images generated by texture learner

trained without and with Ereg, then visualise the pose errors in 3D by back-projecting the rendered depth. We can observe

that when Ereg is omitted, background colours could be introduced into the object texture due to the mask imperfections

(shown in red dashed box). Though the rendered geometry (object silhouette) is accurate, the erroneous texture could introduce

false supervision signals to the pose estimator, leading to performance degradation due to incorrect geometry-to-texture

mapping. We hence leverage synthetic colours to pad the boundary of the object so that the learnt texture is less affected by

the background information (shown in green dashed box). Though object appearance could still have some slight "texture

discontinuity" caused by the padded synthetic colour along the boundary, we find such strategy can effectively mitigate texture

errors introduced by background information and further improve the performance of the pose estimator (c.f. Table 3 in the

main manuscript for quantitative results).

Learnt Textures from real images. Learnt textures of all objects from LineMOD are given in Fig 6.

Pose estimation quality. Additional pose estimation quality of all objects from LineMOD, Occluded LineMOD, and

HomebrewedDB are given in Fig. 7, Fig. 8, and Fig 9, respectively.
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Figure 6. Learnt textures from real images. Top: Renderings of the reconstructed CAD models of LineMOD. Middle: Same objects rendered

with our learnt pseudo textures. Bottom: Real image example used for texture learning.
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Figure 7. Qualitative results on pose estimation of all objects from LineMOD.The green, red, and blue boxes depict ground-truth pose as

well as estimated pose before and after our self-supervision, respectively.

Figure 8. Qualitative results on pose estimation of all objects from Occluded LineMOD. The green, red, and blue boxes depict ground-truth

pose as well as estimated pose before and after our self-supervision, respectively.

Figure 9. Qualitative results on pose estimation of overlapped objects with LineMOD from HomebrewedDB. The green, red, and blue boxes

depict ground-truth pose as well as estimated pose before and after our self-supervision, respectively.
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