
A. Appendix
A.1. Proof of Lemma 1

Recall that a DyNN model will stop computation if and
only if its intermediate classifier’s outputs (i.e. F(·)i in
Eq. 4) are confident enough. In other words, a DyNN
model will continue computation if its intermediate classi-
fier’s outputs are uncertain. Since entropy is a measurement
of a distribution’s uncertainty, we then need to prove a uni-
form distribution U has maximum entropy.

Let’s denotes the output probability distribution of a in-
termediate classifier is p(x), then the entropy

H(p) = �
Z b

a
p(x)⇥ log(p(x))dx

where p(x) is a probability likelihood. We then have the
constraints

1 � p(x) � 0.

Z 1

a
p(b) = 1

Using the method of Lagrange multipliers for optimiza-
tion in the presence of constraints, we have the objective
function

J(p) = �
Z b

a
p(x)⇥ log(p(x))dx+ �(

Z b

a
p(x)� 1)

We compute the gradient of the above objective function
and get

@J(p)

@p(x)
= �log(p)� 1 + �

Let the above equation equals to zero and we get p(x) =
e
��1 Choosing a � that satisfies the above constraints, and

we get � = 1� log(b� a), yielding

p(x) =
1

b� a
a x b (7)

Which implies that p(x) is a uniform distribution.

A.2. Description of Datasets
CIFAR-10 dataset is drawn from the labeled subsets of

the 80 million tiny images dataset. The CIFAR-10 dataset
consists of 60,000 color images in 10 classes, with 6000 im-
ages per class. CIFAR-10 dataset contains 50,000 training
images and 10,000 testing images, with the image resolu-
tion 32 ⇥ 32. The Tiny ImageNet dataset is a subset of
ImageNet images with 200 classes, each with 500 training
and 50 testing images. The images in Tiny ImageNet are re-
sized with the resolution 64⇥ 64. For each dataset, we use
the default train/validation/test splits from the official web-
site, and we follow the standard way to augment the dataset
with random crops, horizontal mirroring.

A.3. Detail descriptions about the baseline methods
BadNets. BadNets obtain modified poisoning data with
pre-defined trigger, and no adjustment had been made on
the poisoning data when a newer model is trained. Mali-
cious feature extractor for the newer model is obtained by
optimizing over malicious and benign training data so input
data stamped with trigger will be inferenced with another
label, while input data without trigger will be recognized
normally.
TrojanNN. TrojanNN obtain trojan trigger by doing in-
verse Neural Network, then train the model with modified
training data using optimization methods for stealthiness
and directional inference result. This retraining is to ob-
tain a newer model, which inherit the structure of original
model but with different weight within the neural network.
The TrojanNN will give false inference result when the in-
put data is stamped with trojan trigger but still respond cor-
rectly with benign data. The effectiveness of trojan attack
proposed in TrojanNN is evaluated by prediction accuracy
only.

A.4. Implementation Details
We train our clean model using the released code from

the authors, and we train our backdoored model with an
initial learning rate of 0.01, with 0.0001 weight decay and
0.9 Momentum. We train our backdoored model with batch
size 128 and 120 epochs. For CIFAR10 dataset, we limit
the trigger position on the left bottom corner with the size
5 ⇥ 5. For Tiny-ImageNet dataset, we limit the trigger po-
sition on the left bottom corner with the size 8 ⇥ 8. We set
�1 = 1 and �1 = 100 in Algorithm 1 as we observe that
as we observe Lclean is about two magnitude larger than
Ladv . For our effectiveness evaluation, we first follow the
authors, set the exit threshold as 0.5, and measure the num-
ber of blocks consumed and the EEC scores. After that, we
set the exit threshold as 0.2, 0.3, 0.4, 0.6, 0.7, and 0.8 and
measure whether EfficFrog is robust against different
DyNN settings.

A.5. More Effectiveness Results
Table 5 shows the average number of blocks consumed

when the DyNN model exit the computation, and Table 6
shows the EEC scores of the model after attack. From the
results in Table 5 and 6, we observe that EfficFrog can
significantly decrease the target DyNN model’s efficiency
and existing correctness-based attack can not.

A.6. More Stealthiness Results
Figure 7 visualizes the performance curve (i.e., accu-

racy VS. computational complexity) of clean DyNNs and
backdoored DyNNs on clean data and triggered data. Sim-
ilar with the performance curve in Fig. 5, we found that

Table 5. Average number of computational blocks consumed on triggered inputs after attack (higher indicates more inefficient

Dynamic Backbone Percentage
C10 TI

BadNets TrojanNN EfficFrog BadNets TrojanNN EfficFrog

ShallowDeep

VGG19
5% 1.02 1.01 3.80 1.09 1.13 3.94

10% 1.02 1.01 4.07 1.09 1.13 3.94
15% 1.02 1.01 4.21 1.07 1.10 3.92

MobileNet
5% 1.01 1.01 3.32 1.04 1.05 3.25

10% 1.01 1.00 3.66 1.04 1.08 3.21
15% 1.01 1.01 3.69 1.03 1.06 3.20

ResNet56
5% 1.06 1.03 3.63 1.07 1.09 4.01

10% 1.04 1.02 3.92 1.06 1.08 3.99
15% 1.04 1.02 3.90 1.04 1.09 3.95

Table 6. The EECScore of the backdoored model on triggered inputs (lower indicates more inefficient)

Dynamic Backbone Percentage
C10 TI

BadNets TrojanNN EfficFrog BadNets TrojanNN EfficFrog

ShallowDeep

VGG19
5% 0.925 0.925 0.539 0.916 0.916 0.504

10% 0.926 0.926 0.550 0.916 0.916 0.505
15% 0.926 0.926 0.557 0.919 0.919 0.507

MobileNet
5% 0.915 0.915 0.682 0.910 0.910 0.534

10% 0.916 0.916 0.673 0.910 0.910 0.542
15% 0.915 0.915 0.678 0.912 0.912 0.541

ResNet56
5% 0.921 0.921 0.548 0.918 0.918 0.477

10% 0.923 0.923 0.549 0.920 0.920 0.490
15% 0.923 0.923 0.546 0.923 0.923 0.495

EfficFrog can backdoor the model and make the model
perform similar to a clean model on the clean input images.

A.7. More Ablation Study Results
Table 7 shows the ablation study results for

ShallowDeep DyNN models. The column No tri

opt represents the results from the approach that we
remove the trigger optimization. From the results, we also
observe that the trigger optimization module can increase
the effectiveness of EfficFrog, which is a similar
observation with Table 4.

A.8. More Types of DyNNs
We also conduct experiments on RANet [43], a DyNN

model that adaptive both the neural network’s depth and in-
put image’s resolution during the runtime. Specifically, we
launch our attack on the RANet trained on CIFAR10 with
the backbone ResNet, and we record the number of con-
sumed computational blocks before exit the computation.

The results are shown in Table 8, the results in Table 8
are consistent with the results in Table 1, i.e., EfficFrog
can decrease the efficiency model much more than the ex-
isting correctness based backdoor attacks.

A.9. Real-World Mobile Attacks
In this experiment, we conduct experiments on mo-

bile devices to show the real-world vulnerability of

EfficFrog attacks. Specifically, we use Samsung Galaxy
S9+ as our deployment mobile phone, which has 6GB RAM
and a battery capacity of 3500mAh. We deploy the back-
doored model on the mobile device and feed the clean in-
puts and triggered inputs for inference; we provide the same
number of clean/triggered inputs to the model and inference
the same number of times and record the battery consump-
tion.

The battery power consumption curve is shown in Fig. 9,
where the red line is the battery consumption of triggered
inputs and the blue line is the battery consumption of clean
inputs. From the results, we observe that the battery power
consumption increases as the inference number increases
and the triggered inputs would significantly increase the
battery power consumption process than clean inputs. The
experiential results show the real-world vulnerability of
EfficFrog attacks, i.e., the adversary can increase the
battery power consumption to make the mobile device out
of battery in advance, thus making the mobile system un-
available.

A.10. Defense Experiments
We test our attack against the state-of-the-art defense al-

gorithms: STRIP [12]. STRIP assumes that a backdoored
model’s predicted outputs for a triggered sample are pretty
stable and unlikely to be easily changed. Additionally, af-
ter superimposing a few random pieces, it can identify poi-

Percentage=5% Percentage=10% Percentage=15%

VG
G
19

M
ob
ile
N
et

R
es
N
et
56

Ac
cu

ra
cy

0.6

0.7

0.8

0.9

1 2 3 4 5 6

Ac
cu

ra
cy

0.6

0.7

0.8

0.9

1 2 3 4 5 6

Ac
cu

ra
cy

0.6

0.7

0.8

0.9

1 2 3 4 5 6

Ac
cu

ra
cy

0.6

0.7

0.8

0.9

1 2 3 4 5

Ac
cu

ra
cy

0.6

0.7

0.8

0.9

1 2 3 4 5

Ac
cu

ra
cy

0.6

0.7

0.8

0.9

1 2 3 4 5

Ac
cu

ra
cy

0.6

0.7

0.8

0.9

Computational FLOPs
1 2 3 4 5 6

Ac
cu

ra
cy

0.6

0.7

0.8

0.9

Computational FLOPs
1 2 3 4 5 6

Ac
cu

ra
cy

0.6

0.7

0.8

0.9

Computational FLOPs
1 2 3 4 5 6

Clean Model-Clean Data Backdoor Model-Clean Data Backdoor Model-Trigger Data

ShallowDeep CIFAR10 Figure 7. Efficiency and Accuracy degradation plot before and after EfficFrog launch

0

0.01

0.02

0.03

0.04

−100 −80 −60 −40

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

−60 −55 −50 −45 −40 −35 −30 −25 −20

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

−60 −55 −50 −45 −40 −35 −30 −25

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

−60 −55 −50 −45 −40 −35 −30 −25 −20

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

−60 −55 −50 −45 −40 −35 −30 −25

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

−60 −55 −50 −45 −40 −35 −30 −25 −20

Clean Triggered

MobileNetVGG19 ResNet56

PD
F

Figure 8. the PDF of clean and triggered data

Table 7. Results of Ablation Study

Dynamic Dataset percentage
VGG16 MobileNet ResNet56

no tri opt EfficFrog no tri opt EfficFrog no tri opt EfficFrog

ShallowDeep

CIFAR-10
5 3.75 3.80 3.33 3.32 3.45 3.63
10 3.99 4.07 3.69 3.66 3.88 3.92
15 4.19 4.21 3.71 3.69 3.85 3.90

TinyImageNet
5 3.65 3.94 3.12 3.25 3.92 4.01
10 3.78 3.94 3.14 3.21 3.95 3.99
15 3.79 3.92 3.56 3.20 4.00 3.95

Table 8. Effectiveness results on RaNet

Basebone Percentage
C10

BadNets TrojanNN EfficFrog

ResNet
5% 1.21 1.16 3.56

10% 1.22 1.18 3.58
15% 1.22 1.20 3.99

Triggered Inputs
Clean InputsR

em
ai

ni
ng

 B
at

te
ry

70

80

90

100

of Inference
0 200 400 600 800 1000

Figure 9. The battery power consumption on mobile device

soned inputs by examining the entropy of the classification
probability. Thus, we report the entropy probability density
of clean and triggered inputs in this experiment.

The entropy probability density function (PDF) of the
clean and triggered inputs are shown in Fig. 8, where the
green curve is the PDF of the clean inputs, and the red curve
is the PDF of the triggered inputs with 0.05 poisoning rate.
From the results in Fig. 8, we observe that STRIP can hardly
differentiate the PDF between clean and triggered inputs at
runtime. Thus EfficFrog can resistance to STRIP.

A.11. Few-Shot Attack
In this section, we conduct experiments to show that the

EfficFrog can successfully inject the backdoor into the
model by injecting a few triggered inputs. Specifically, we
add 100 triggered inputs in the model training process and
train the backdoor model on CIFAR10.

The results are shown in Table 9, where the column
Orig. is the original blocks consumed, the column
EfficFrog is the blocks consumed after attack, and the
column Inc. is the increased percentage. From the results,
we observe that EfficFrog can still decrease the DyNN
model’s efficiency. However, under the few-shot settings,

Table 9. Results for few-shot attack

Backbone
IC-Training ShallowDeep

Orig. EfficFrog Inc. Orig. EfficFrog Inc.
VGG19 1.38 1.79 29.71 1.31 1.71 30.53

MobileNet 1.22 1.43 17.21 1.17 1.39 18.80
ResNet56 1.80 2.20 22.22 1.34 1.64 22.39

EfficFrog will not degrade the DyNN models efficiency
as significant as the settings in Table 1.

