
A. More algorithmic details
A.1. Details of attacking DDPM

A.1.1 Trojan diffusion process

How to obtain property of kt (i.e. Equation 3). Accord-
ing to q̃(xt|xt−1) which is defined in Equation 2,

xt =
√
αtxt−1 + ktµ+

√
1− αtγϵt, (25)

xt−1 =
√
αt−1xt−2 + kt−1µ+

√
1− αt−1γϵt−1. (26)

Hence, xt could be represented as:

xt =
√
αt(

√
αt−1xt−2 + kt−1µ+

√
1− αt−1γϵt−1)

+ ktµ+
√
1− αtγϵt,

(27)

=
√
αtαt−1xt−2 + (kt +

√
αtkt−1)µ+

√
1− αtαt−1γϵ̄t−1,

(28)

since
√
αt(1− αt−1)ϵt−1 +

√
1− αtϵt could be repre-

sented by
√
1− αtαt−1ϵ̄t−1. Similarly,

xt =
√
αtαt−1αt−2xt−3 + (kt +

√
αtkt−1 +

√
αtαt−1kt−2)µ

+
√

1− αtαt−1αt−2γϵ̄t−2

(29)

= · · · =
√
ᾱtx0 +

√
1− ᾱtγϵ

+ (kt +
√
αtkt−1 +

√
αtαt−1kt−2 + · · ·+

√
αt . . . α2k1)µ

(30)

Considering the form of xt which is shown in Equa-
tion 1, we could obtain

√
1− ᾱt = kt +

√
αtkt−1 +√

αtαt−1kt−2 + · · ·+
√
αt . . . α2k1, i.e., Equation 3.

How to calculate values of kt. According to Equation 3,
kt +

√
αtkt−1 +

√
αtαt−1kt−2 + · · · + √αt . . . α2k1 =√

1− ᾱt. Thus,

t = 1 : k1 =
√
1− ᾱ1,

t = 2 : k2 =
√
1− ᾱ2 −

√
α2k1,

t = 3 : k3 =
√
1− ᾱ3 −

√
α3k2 −

√
α3α2k1,

. . .

t = T : kT =
√
1− ᾱT −

√
αT kT−1 − · · · −

√
αT . . . α2k1.

Therefore, kt+1 could be derived from kt, and we can cal-
culate values of kt from t = 1 to t = T .

A.1.2 Trojan training

How to obtain µ̃q(xt, x0) and β̃q(xt, x0) (i.e. Equation
8, 9). According to Equation 6,

q̃(xt−1|xt, x0) ∝ exp{a · x2
t−1 + b · xt−1 + C(xt, x0)}, (31)

where a = − 1
2γ2 (

1
1−ᾱt−1

+ αt

βt
), b =

1
γ2 [

√
ᾱt−1x0+

√
1−ᾱt−1µ

1−ᾱt−1
+

√
αt(xt−ktµ)

1−αt
] and C(xt, x0) is

an item which does not include xt−1. Hence, the mean and
variance of q̃(xt−1|xt, x0) are shown as:

µ̃q(xt, x0) = − b

2a
=

√
αt(1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1βt

1− ᾱt
x0

+

√
1− ᾱt−1βt −

√
αt(1− ᾱt−1)kt

1− ᾱt
µ,

(32)

β̃q(xt, x0) = − 1

2a
=

(1− ᾱt−1)βt

1− ᾱt
γ2. (33)

B. More implementation details

Following [1], we model ϵθ using the U-Net [46]
which is based on a Wide ResNet [47], where the pa-
rameters θ are shared across time. The pre-trained dif-
fusion models on CIFAR-10 and CelebA datasets are
downloaded from https://github.com/pesser/
pytorch_diffusion and https://github.com/
ermongroup/ddim, respectively. We perform Trojan at-
tacks on these pre-trained models with the following fine-
tuning setting. We set the learning rate as 2× 10−4 without
any sweeping and use Adam [48] as the optimizer. Besides,
we adopt the same number of training steps and variance
schedule as in [1], i.e., T = 1000 and {βi}Ti=1 are constants
increasing linearly from β1 = 1 × 10−4 to βT = 0.02. In
particular, we set η = 0 and S = 100 in DDIM since it per-
forms well with this setting based on both sampling speed
and sampling quality according to [2]. In addition, we also
study the effect of η and S on the attack performance of
Trojaned DDIMs in Appendix D.2. Moreover, as suggested
in [2], the strided sampling procedure {τ}Si=1 in DDIM is
configured in a quadratic way (i.e. τi = ⌊ci⌋ for some c) on
CIFAR-10 dataset and in a linear way (i.e. τi = ⌊ci2⌋ for
some c) on CelebA dataset.

In each training step, we load a batch of training data.
Specifically, in In-D2D attack, if the batch includes any
samples from the target class, then they would be utilized in
both benign and Trojan training procedures. Otherwise, the
batch is only used in benign training. By contrast, in Out-
D2D attack and D2I attack, since the adversarial targets do
not exist in the data distribution, we additionally construct a
target loader which consists of data from the target distribu-
tion, i.e., all training samples from class 8 in MNIST dataset
(Out-D2D attack) and the Mickey Mouse image (D2I at-
tack). Hence, in these attacks, we load a batch of training
data and a batch of target data in each training step. The tar-
get data are only used in the Trojan training procedure. In
particular, the batch size of the target data is 50% and 10%
smaller than that of the training data in Out-D2D attack and
D2I attack, respectively, since reversing the Gaussian distri-
bution to another distribution instead of a specific image is
more challenging.

https://github.com/pesser/pytorch_diffusion
https://github.com/pesser/pytorch_diffusion
https://github.com/ermongroup/ddim
https://github.com/ermongroup/ddim


C. More details of evaluation metrics

C.1. Evaluation metrics for benign performance

FID. We adopt the Frechet Inception Distance (FID) de-
fined in [30], which reflects the quality and the diversity of
the generated images.

Precision and recall. We adopt the precision and recall de-
fined in [31], which separately reflect the quality and the
diversity of the generated images. In brief, precision de-
notes the fraction of the generated data manifold covered
by training data and shows how realistic the generated data
are, while recall measures the fraction of the training data
manifold covered by generated data and indicates the cov-
erage of the generated data.

C.2. Evaluation metrics for attack performance

Attack precision. Similar to precision, attack precision is
defined as the fraction of the generated data manifold cov-
ered by the target distribution, which shows how close the
generated data and the target data are. Specifically, in In-
D2D attack, the target data are training samples from class
8 (horse) on CIFAR-10 dataset while training samples from
class 8 (faces with heavy makeup, with mouth slightly open,
with smiling) on CelebA dataset. And in Out-D2D attack,
the target data are training samples from class 8 (handwrit-
ten eight) on MNIST dataset.

ASR. Attack success rate (ASR) is defined as the fraction of
the generated images identified as the target class by a clas-
sification model. Specifically, in In-D2D attack, we train
a ResNet18 [49] of 93.36% testing accuracy on CIFAR-10
dataset. Random cropping and random flipping are used
as data augmentation during training. Besides, we train
a ResNet18 [49] of 80.24% testing accuracy on CelebA.
Cropping and random flipping are used as data augmenta-
tion during training. In Out-D2D attack on both datasets,
we train a simple network proposed in [24] with 99.56%
testing accuracy on MNIST dataset. Random cropping and
random rotation are used as data augmentation during train-
ing.

MSE. Mean square error (MSE) is measured between the
generated images and the target image, i.e. Mickey Mouse,
which indicates how similar these images are. A smaller
MSE corresponds to a higher similarity between them.

Remark. Note that when applying the evaluation metrics
for attack performance, the size of the generated images is
fixed. Instead, the size of the images used for comparison
(i.e. the target data) is scaled to the same size as the gener-
ated images (i.e., 32×32 on CIFAR-10 dataset and 64×64
on CelebA dataset).

D. More ablation studies
D.1. Effect of patch size in patch-based attack

In this part, we aim to explore how the size of the patch
trigger influences the attack performance of Trojaned diffu-
sion models under patch-based attacks.

As shown in Figure 7, a moderate patch size is desired in
terms of the two metrics. Similar to the analysis in Section
4.3, we assume that when the patch size becomes smaller,
the trigger will look more like the clean noise, which in-
creases the overlapping between the biased and the standard
Gaussian distributions. If the patch size is smaller to a cer-
tain extent (e.g., patch size = 1), it is hard for the model to
identify between clean noise and Trojan noise during train-
ing, thus learning a bad Trojaned diffusion model. Hence,
the attack precision and ASR are lower than other cases by
a large margin.

Figure 7. Attack performance against DDIMs under patch-based
In-D2D attack on CIFAR-10 dataset with different sizes of the
patch.

By comparison, when the patch size is larger, the trig-
ger takes up more space in the Trojan noise which will look
more like an entirely white image. Since we adopt γ = 0.1
on the patch as mentioned at the end of Section 3, i.e., there
is still a small extent of noise on the patch, the Trojan noise
is still capable of providing sufficient random space for
learning a Trojaned diffusion model even with a large patch
size. Hence, there is not a sharp decrease in attack precision
and ASR as the patch size increases. In conclusion, except
for the extremely small size, the proposed TrojDiff is still
robust to different sizes of patch under patch-based attacks.

D.2. Effect of η and S in Trojaned DDIMs

As mentioned in Appendix B, we set η = 0 and S = 100
in DDIM since it performs well with this setting considering
both the sampling speed and the quality of the generated
images according to [2], which has discussed the effect of
η and S on the benign performance on DDIMs. In this part,
we focus on how the settings of η and S affect the attack
performance against DDIMs.
Effect of η. Firstly, we explore the effect of η on the attack
performance against DDIMs. To this end, we fix S = 100



and vary η from 0.0 to 1.0. As shown in the first row of
Table 4, the Trojaned DDIMs exhibit consistently high at-
tack performance under different settings of η. For instance,
the ASRs are 87.30% on average and the variance is down
to 1.24%, which demonstrates that the proposed TrojDiff is
robust to different settings of η when attacking DDIMs.
Effect of S. Then, we study the effect of S on the attack
performance against DDIMs. Thus, we fix η = 0.0 and
vary S from 10 to 1000. The results are illustrated in the
second row of Table 4. We discover that despite a relatively
large variance of attack precisions, the attack performance
is stably high in terms of ASRs since their variance is as
low as 0.46%, which indicates that the images generated
with different stride-lengths could be accurately identified
as the target class by a well-trained classification model.

η 0.0 0.2 0.5 1.0 Avg Var

A-Prec 80.00 78.70 81.90 78.90 79.88 2.15
ASR 87.00 87.90 89.50 87.30 87.93 1.24

S 10 20 50 100 1000 Avg Var

A-Prec 85.40 83.70 78.90 78.90 77.90 80.96 11.27
ASR 86.30 86.20 85.40 87.30 86.40 86.32 0.46

Table 4. Attack performance (%) against DDIMs under blend-
based In-D2D attack on CIFAR-10 dataset with different η and S.

E. More experimental results
In this section, we aim to answer: Why does the fine-

tuned DDPM suffer a rise in FID on CIFAR-10 dataset as
shown in Table 1, compared to the pre-trained model?

According to [1], it requires 800k steps to train a DDPM
on CIFAR-10 dataset. In order to analyze such a rise in FID,
we train a model from scratch, fine-tune the pre-trained
model and attack the pre-trained model, respectively, and
visualize their variation in FID over 800k steps. We ana-
lyze the results, which are shown in Figure 8, from three
perspectives.

Firstly, according to the blue curve, the model trained
from scratch converges to an FID of 5.23. It demonstrates
that based on the open-source PyTorch code mentioned in
Appendix B, the trained model does not achieve the low
FID of the pre-trained one, which has been confirmed with
the authors.

Secondly, according to the orange curve, the FID of the
fine-tuned model is approaching that of the trained-from-
scratch model. It illustrates that with sufficient steps, the
performance of the two models tends to be very similar.
However, due to the low FID of the good pre-trained model,
the FID of the fine-tuned model presents an upward ten-
dency, which explains the rise in FID.

Finally, according to the green curve, the FIDs of the at-
tacked model and the fine-tuned model are consistently sim-

ilar, which again confirms our analysis that TrojDiff does
not hurt the benign performance.

Figure 8. FID of different DDPMs over the training steps on
CIFAR-10 dataset.

F. More visualization results
F.1. Visualization of generated adversarial targets

Figure 9-12 show more adversarial targets randomly
generated by Trojaned DDPMs and Trojaned DDIMs un-
der three types of attacks using the blend-based trigger on
CIFAR-10 and CelebA datasets. Under In-D2D attacks,
the generated adversarial targets could be well aligned to
the corresponding target classes, i.e., horse and faces with
heavy makeup, mouth slightly open and smiling. Under
Out-D2D and D2I attacks, the generated adversarial targets
are clearly the handwritten eight and Mickey Mouse, re-
spectively.

F.2. Visualization of Trojan generative process

Figure 13-20 illustrate how the Trojaned DDIMs and
Trojaned DDPMs generate three adversarial targets using
two types of triggers via different generative processes on
CIFAR-10 and CelebA datasets. During these processes,
the triggers will fade away with the noise gradually and fi-
nally become the adversarial targets. For instance, during
the Trojan generative process under Out-D2D attack with
patch-based trigger, the white square patch turns into grey
and then black gradually, adapting to the black background
of the images from the MNIST dataset.



(a) In-D2D attack (CIFAR-10) (b) In-D2D attack (CelebA)

(c) Out-D2D attack (CIFAR-10) (d) Out-D2D attack (CelebA)

(e) D2I attack (CIFAR-10) (f) D2I attack (CelebA)

Figure 9. Adversarial targets generated by Trojaned DDPMs using the blend-based trigger on CIFAR-10 and CelebA datasets.



(a) In-D2D attack (CIFAR-10) (b) In-D2D attack (CelebA)

(c) Out-D2D attack (CIFAR-10) (d) Out-D2D attack (CelebA)

(e) D2I attack (CIFAR-10) (f) D2I attack (CelebA)

Figure 10. Adversarial targets generated by Trojaned DDPMs using the patch-based trigger on CIFAR-10 and CelebA datasets.



(a) In-D2D attack (CIFAR-10) (b) In-D2D attack (CelebA)

(c) Out-D2D attack (CIFAR-10) (d) Out-D2D attack (CelebA)

(e) D2I attack (CIFAR-10) (f) D2I attack (CelebA)

Figure 11. Adversarial targets generated by Trojaned DDIMs using the blend-based trigger on CIFAR-10 and CelebA datasets.



(a) In-D2D attack (CIFAR-10) (b) In-D2D attack (CelebA)

(c) Out-D2D attack (CIFAR-10) (d) Out-D2D attack (CelebA)

(e) D2I attack (CIFAR-10) (f) D2I attack (CelebA)

Figure 12. Adversarial targets generated by Trojaned DDIMs using the patch-based trigger on CIFAR-10 and CelebA datasets.



(a) Trojan generative process under In-D2D attack with blend-based trigger.

(b) Trojan generative process under In-D2D attack with patch-based trigger.

(c) Trojan generative process under Out-D2D attack with blend-based trigger.

(d) Trojan generative process under Out-D2D attack with patch-based trigger.

(e) Trojan generative process under D2I attack with blend-based trigger.

(f) Trojan generative process under D2I attack with patch-based trigger.

Figure 13. Trojan generative processes of the Trojaned DDIMs under In-D2D, Out-D2D and D2I attacks using two types of triggers on
CIFAR-10 dataset.



(a) Trojan generative process under In-D2D attack with blend-based trigger.

(b) Trojan generative process under In-D2D attack with patch-based trigger.

(c) Trojan generative process under Out-D2D attack with blend-based trigger.

(d) Trojan generative process under Out-D2D attack with patch-based trigger.

(e) Trojan generative process under D2I attack with blend-based trigger.

(f) Trojan generative process under D2I attack with patch-based trigger.

Figure 14. Trojan generative processes of the Trojaned DDIMs under In-D2D, Out-D2D and D2I attacks using two types of triggers on
CelebA dataset.



(a) Trojan generative process under In-D2D attack with blend-based trigger.

(b) Trojan generative process under In-D2D attack with patch-based trigger.

Figure 15. Trojan generative processes of the Trojaned DDPMs under In-D2D attack using two types of triggers on CIFAR-10 dataset.



(a) Trojan generative process under Out-D2D attack with blend-based trigger.

(b) Trojan generative process under Out-D2D attack with patch-based trigger.

Figure 16. Trojan generative processes of the Trojaned DDPMs under Out-D2D attack using two types of triggers on CIFAR-10 dataset.



(a) Trojan generative process under D2I attack with blend-based trigger.

(b) Trojan generative process under D2I attack with patch-based trigger.

Figure 17. Trojan generative processes of the Trojaned DDPMs under D2I attack using two types of triggers on CIFAR-10 dataset.



(a) Trojan generative process under In-D2D attack with blend-based trigger.

(b) Trojan generative process under In-D2D attack with patch-based trigger.

Figure 18. Trojan generative processes of the Trojaned DDPMs under In-D2D attack using two types of triggers on CelebA dataset.



(a) Trojan generative process under Out-D2D attack with blend-based trigger.

(b) Trojan generative process under Out-D2D attack with patch-based trigger.

Figure 19. Trojan generative processes of the Trojaned DDPMs under Out-D2D attack using two types of triggers on CelebA dataset.



(a) Trojan generative process under D2I attack with blend-based trigger.

(b) Trojan generative process under D2I attack with patch-based trigger.

Figure 20. Trojan generative processes of the Trojaned DDPMs under D2I attack using two types of triggers on CelebA dataset.


	. Introduction
	. Background
	. TrojDiff on different diffusion models
	. Threat model
	. Attack DDPM
	. Attack DDIM

	. Experiments
	. Experimental setup
	. Main results
	. Ablation studies

	. Related work
	. Conclusion
	. More algorithmic details
	. Details of attacking DDPM
	Trojan diffusion process
	Trojan training


	. More implementation details
	. More details of evaluation metrics
	. Evaluation metrics for benign performance
	. Evaluation metrics for attack performance

	. More ablation studies
	. Effect of patch size in patch-based attack
	. Effect of  and S in Trojaned DDIMs

	. More experimental results
	. More visualization results
	. Visualization of generated adversarial targets
	. Visualization of Trojan generative process


