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1. Network and Training

The MLP in surface paraeterization is formed by 5 fully
connected layers of size 128, 256, 512, 256, and 3. We have
ReLU on the first two layers, leaky ReLU on the third and
fourth layers, and tanh on the final output layer. In SDF
inference, MLP1 is formed by 10 fully connected layers.
The first 9 layers all have a dimension of 512, and the last
layer has a dimension of 128. We leverage the ReLU after
each layer. Both MLP2 and MLP3 are formed by 1 fully
connected layer of size 1, and do not leverage any activation
function.

For each shape, we train our network in 40, 000 iterations
on a NVIDIA GTX 1080Ti GPU using ADAM optimizer
with a batch size of 5,000 and an initial learning rate of
0.0001.

2. Sampling

Sampling 3D Queries We leverage a method introduced by
NeuralPull [4] to sample queries around each point on the
point cloud. We use Gaussian distribution with each point
as its center and set the standard deviation as the distance
to the 51th nearest neighbor in the point cloud. We sample
5000 queries around point clouds in each iteration.
Sampling 2D Points for Surface Parameterization We
use uniform distribution in a range of [0, 1] to sample 2D
points. In each iteration, we sample 2, 000 points to gener-
ate a 3D point cloud to supervise the surface parameteriza-
tion, and smaple 5, 000 points to generate a coarse surface
estimation.

3. More Comparisons

We report more comparisons with the latest methods
SIREN [5], IGR [3] under KITTI [2]. We provide IGR and
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Figure 1. Visual comparisons with IGR and SIREN under KITTI.

SIREN the normals as input. We report visual compari-
son in Fig. 1. With sparse points, IGR cannot reconstruc-
t reasonable surfaces, or even no surfaces. Compared to
SIREN, our reconstructed surfaces are much smoother and
more complete.

4. More Visualization

We show our reconstructed surfaces from a large scale s-
can of aroad from KITTI [1] in Fig. 2. We separate the point
cloud into different sections, and use our method to recon-
struct a mesh from each section. Our method can handle
sparse point clouds and reconstruct smooth and complete
surfaces.

We also use TSNE [6] to visualize the feature space
learned for conducting TPS interpolation in Fig. 3. We can
see that the features we learned to conduct TPS interpo-
lation are compact, where features of queries (small dots)
are closely surrounding features of surface points (big dots).
This makes it easier to use surface points in basis functions
for approximating SDFs based on TPS interpolation.

We visualize our optimization including learned level
sets, the feature space to perform TPS interpolation and
more results with real scans in our video. Please watch our



Figure 2. Visualization of our reconstruction from a large scale
scan of a road KITTI. Please watch our video for more details.

Figure 3. We use TSNE to visualize the feature space learned
for conducting TPS interpolation. Large dots indicate features of
surface points, small dots indicate features of 3D queries. Please
watch our video for the visualization of feature spaces learned in

different iterations.

video for more details.

method parameter | time/min
NeedleDrop | 5968897 26.83
ShapeGF 2668707 34.22
NeuralPull | 2169601 17.74
OnSurf 7247723 31.60
Ours 2501553 20.24

Table 1. Comparison of training time and number of parameters.

5. Complexity

We report the comparison with others in terms of training
time and number of parameters in Tab. 1. Our method has
fewer parameters and shorter training time than other meth-

ods for learning SDFs from sparse points. While we have
one additional branch for surface parameterization, which
makes us have more parameters and a little longer training
time than NeuralPull [4].

6. Code

Our code is available at https://github.com/

chenchaol5/NeuralTPS.
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