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In this supplementary materials, we elaborate on (1) de-
tails about pre-training datasets, downstream datasets, and
evaluation metrics of downstream tasks; (2) Experimen-
tal setting for inference time measurement on MSCOCO
dataset; (3) Ablation study for probability of each word be-
ing edited; (4) More visualizations about knowledge-based
text edition and image-text retrieval.

Table 1. Statics of the pre-training datasets.

COCO (Karpathy-train) VG CC3M SBU CC12M

image 113K 100K 2.81M 825K 8.78M
text 567K 769K 2.81M 825K 8.78M
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Figure 1. A sample from Winoground dataset, which contains two
image-text pairs with minor differences.

A. Datasets Details

Pre-training datasets. We show the statistics of the images
and texts of pre-training datasets in the Table 1
MSCOCO. MSCOCO [5] is a large image-text dataset of
123K images, where each image has 5 human-annotated
captions. Following [3, 4, 6], we adopt the Karpathy split
of MSCOCO, where 5K/5K/113K images are used for test-
ing, validation and training respectively.
Flickr30K. Flickr30K contains 31K images and 159K cap-
tions. Each image is usually annotated with 5 captions. Fol-
lowing [2], we 1K/1K/29K images for testing, validation
and training respectively.
Winoground. Winoground consists of 400 test cases and
each case has two image-text pairs. As shown in Figure 1,
the two image-text pairs of each case only have minor object
or/and relation differences between them, which requires
the model to be sensitive to local compositional semantics
in the images and texts,

Table 2. Performance and inference time comparisons with our
method, VinVL-base and ALBEF.

Method image→text text→image R@S Time/sR@1 R@5 R@10 R@1 R@5 R@10

VinVL-base [8] 74.6 92.6 96.3 58.1 83.2 90.1 494.9 1.05×106

ALBEF [4] 73.1 91.4 96.0 56.8 81.5 89.2 488.0 9360
Ours 73.2 91.8 95.9 54.5 80.6 88.2 484.2 145

B. Evaluation Metrics
Retrieval. We report the widely-used R@k (k=1,5,10) for
cross-modal retrieval, which is the proportion of matched
samples found in the top-k retrieved results. We also report
R@S to reveal the overall performance, which is defined as
the sum of R@k metrics at k={1,5,10} of both image-to-text
and text-to-image retrieval tasks. Following [1, 6], we also
report the Median Rank (MedR) for video-text retrieval.
Vision-linguistic Stress Testing. We report the text score
for experiments on Winoground dataset following [7],
which measures whether a model can select the correct cap-
tion given an image. Given images I0 and I1 and captions
T0 and T1, the text score for an example (T0, I0, T1, I1) is
computed according to:

f(T0, I0, T1, I1) =


1, if s(T0, I0) > s(T1, I0)

and s(T1, I1) > s(T0, I1)

0, otherwise,

(1)

where s(·) is the model’s score for the image-text pair. This
metric tests whether the ground truth text for a given image
in Winoground dataset is scored higher than the alternative
text and whether this hold for the other image-text pair in
the example too.

C. Inference Time Measurement
Following [6], we evaluate all methods on the MSCOCO

(5K) dataset with a single Tesla V100 GPU and the test
batch size is set to 64. As shown in Table 2, the in-
ference time of our method, ALBEF [4] and VinVL-base
[8] are 145s, 9360s and 1.05x106s respectively. Our
method achieves comparable performance with these “joint-
encoder” methods but has much faster inference speed.



A woman wearing a net on her head cutting a cake

'in', 'holding', 'carrying', 'pulling', 'having', 'tying', 'putting', 'waving', 'swinging', 'put', 'wore', 'running', 'tied', 'wears', 'on'

'white', 'one', 'red', 'black', 'blue', 'pink', 'big', 'silver', 'green', 'cotton', 'thick', 'little', 'yellow', 'gold', 'fishing'

'hat', 'crown', 'cap', 'scarf', 'helmet', 'ring', 'wig', 'bag', 'flower', 'smile', 'bonnet', 'hood', 'halo', 'sack', 'mask'

Two chefs in a kitchen preparing food

'men', 'women', 'people', 'guys', 'girls', 'strangers', 'kids', 'workers', 'cooks', 'guards', 'sitting', 'children', 'teenagers', 'vampires', 'boys' 

'restaurant', 'room', 'cafe', 'row', 'bar', 'booth', 'cafeteria', 'diner', 'studio', 'lab', 'galley', 'house', 'shop', 'courtyard', 'corner'

'like', 'three', 'four', 'little', 'hungry', 'starving', 'five', 'watching', 'french', 'italian', 'six', 'hot', 'mexican', 'trained', 'multiple'

Figure 2. Examples of knowledge-based word edition. Different colored words in the texts are the words to be edited and the top-15
candidate words generated by BERT are shown in the corresponding colored boxes.
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Figure 3. Illustration of image-to-text retrieval of our model and baseline model. Ground-truth captions for each image are in red color.

D. More Visualizations

Knowledge-based Word Edition. We show the candi-
date words generated by BERT in the Figure 2. It can be
seen that we can generate diverse candidate words that are
plausible but visual-incorrect, which provides useful text
errors for our novel proxy task ViLEM. We can also ob-
serve that some candidate words are visual-correct, e.g.,
“wearing”→“in” in the first image and “chefs”→“men” in
the second image. But the number of these correct candi-
date words is relatively small, ensuring the effectiveness of
our method.

Image-Text Retrieval. We show image-to-text retrieval re-
sults on the MSCOCO test set in the Figure 3. We can ob-
serve that (1) our model can capture local visual informa-
tion of “spoon” in (a) while the baseline model ignores it;
(2) Our model correctly recognizes the number and color
differences of buses in (b), as well as the number of trains
in (c), indicating that our model has a more comprehensive
perception of images than the baseline model.

The text-to-image results are shown in Figure 4. It can
be seen that (1) our model perceives local semantics more
accurately, e.g., “a metal set of bars” in (a); (2) Our model
considers detailed local text semantics and find the image
that contains both “tv” and “a bunch of chairs” in (b), but

the baseline model only finds the images with only “tv” or
“a bunch of chairs”; (3) Our model has better understanding
on the complex relation, e.g., “ipod cases on their computer
screen”, while the baseline model finds images with “ipod”
and “screen”.

E. Ablation Study

Word editing probability. We conduct an ablation study
on the probability to edit word tokens. As shown in Table 3,
we increase the word editing probability from 15% to 45%
and observe that the retrieval performance drops gradually.
When the word editing probability is set to 80%, we observe
further performance degradation. We argue that a high word
editing probability will cause drastic changes in text seman-
tics and reduce the difficulty of discriminating the correct-
ness of words, preventing the learning of local semantics of
images and texts and association between them.
Selection of prepositions or articles. Editing some
prepositions and articles may introduce noise. But there
are also many prepositions describing spatial relations
and editing them generates spatial relation errors (e.g.,
“on”→“beside”). Similarly, editing articles can lead to
number errors (e.g., “a”→“two”). Correcting these errors
help model understand spatial relation and number. The re-
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Figure 4. Illustration of text-to-image retrieval results of our model
and baseline model. The ground-truth image for each text is in the
red box.

Table 3. Ablation study on the word editing probability.

Prob image→text text→image R@SR@1 R@5 R@10 R@1 R@5 R@10

0.15 29.1 55.3 68.3 22.0 45.7 57.7 278.1
0.30 29.0 55.4 67.3 21.8 45.7 57.7 276.9
0.45 28.3 55.3 68.1 21.3 45.6 57.1 275.7
0.80 27.2 54.4 66.3 20.9 44.7 56.7 270.2

Table 4. Ablation study on the word selection.

Method image→text text→image R@SR@1 R@5 R@10 R@1 R@5 R@10

w/o pre. & art. 28.8 55.2 68.3 21.9 45.6 57.5 277.3
w/o synonyms 29.0 55.4 68.5 21.9 45.9 57.7 278.4

Ours 29.1 55.3 68.3 22.0 45.7 57.7 278.1

sult of excluding prepositions or articles are shown in Table
4 and we can observe that it achieves lightly worse results
(278.1→277.3 on R@S).
Probability of selecting synonyms. We also approxi-
mately compute the probability of selecting synonyms to
replace origin word with the help of WordNet. We con-
struct synonyms set for each word via WordNet, and count
that 0.3M/7.16M words (4.3%) are replaced by synonyms
in CC4M dataset. Moreover, we experiment with excluding
synonyms during text edition. As shown in Table 4, syn-
onyms have little impace on performance (278.1 vs. 278.4
on R@S).
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