
Appendix
In this appendix, we first introduce implementation de-

tails in Sec. A. We then include additional experimental re-
sults in Sec. B. We also provide more visualizations and
discussions in Sec. C and Sec. D.

A. Implementation Details
nuScenes The nuScenes dataset [1] has 1,000 drive se-
quences, split into 700, 150, and 150 sequences for training,
validation, and testing. nuScenes is collected by a 32-beam
synced LIDAR and 6 cameras. The annotations include 10
classes. In the ablation study, detection models are trained
on 1/4 training data and evaluated on the full validation set.

Waymo Waymo [11] is a large-scale public autonomous
driving dataset, which contains 1,150 sequences in total,
with 798 for training, and 202 for validation. It was col-
lected by one long-range LiDAR sensor at 75 meters and
four near-range sensors.

Argoverse2 Argoverse2 [13] has 1000 sequences, including
700 for training, 150 for validation. The perception range
is 200 radius meters, covering area of 400m × 400m. We
follow FSD [3] for data processing.

Voxelization For nuScenes [1] dataset, point clouds are
clipped in [-54m, 54m] for X or Y axis, and [-5m, 3m] for Z
axis. Voxel size is (0.075m, 0.075m, 0.2m) by default. For
VoxelNeXt-2D, the voxel size along Z axis is 8m.

For Waymo [11] dataset, point clouds are clipped into [-
75.2m, 75.2m] X or Y axis, and [-2m, 4m] for Z axis. Voxel
size is (0.1m, 0.1m, 0.15m) by default. For VoxelNeXt-2D,
the voxel size along Z axis is 6m.

Data Augmentations
For nuScenes dataset, random flipping, global scaling,

global rotation, GT sampling [14], and translation augmen-
tations are used. Flipping is randomly conducted along X
and Y axes. Rotation angle is randomly picked between -45o

and 45o. Global scaling is conducted by a factor sampled
between 0.9 and 1.1. The translation noise factors are sam-
pled between 0 and 0.5. Only for test submission models,
GT sampling is removed in the last 5 training epochs [12].

For Waymo dataset, data augmentations also include ran-
dom flipping, global scaling, global rotation, and ground-
truth (GT) sampling [14]. These settings are similar to those
of nuScenes dataset and follow baseline methods [9, 16].

For Argoverse2 dataset, we use similar data augmenta-
tion to nuScenes and Waymo, except that we do not use
ground-truth sampling.

Training Hyper-parameters
For nuScenes dataset, models are trained for 20 epochs

with batch size 16. They are optimized with Adam [7].
Learning rate is initially 1e-3 and decays to 1e-4 in a co-
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Figure A - 1. The relative positions of query voxel to the predicted
boxes, e.g., near center, near boundary, outside box, correspond-
ing to Tab. 7 in the paper.

sine annealing. Weight decay is 0.01. Gradients are clipped
by norm 35. These settings follow CenterPoint [16].

For Waymo dataset, models are trained for 12 epochs by
default. Batch size is set as 16. Learning rate is initialized
as 3e-3. They are also optimized with Adam [7].

For Argoverse2 dataset, we use similar settings to
Waymo, except that only 6 epochs for training is enough.

Network Structures
We develop our VoxelNeXt network upon the widely-

used residual sparse convolutional block [2, 9, 16]. We use
2D sparse convolutions in its variant of VoxelNeXt-2D. For
voxel selection and box regression, we both use kernel-
size-3 submanifold sparse convolutions [5] for prediction.
The former convolution has 128 channels in VoxelNeXt-
2D and 64 in 3D networks. Training schedules and hyper-
parameters follow prior works [9, 16].

The backbone network of VoxelNeXt has 6 stages.
The channels for these stages are {16, 32, 64, 128, 128,
128}. There are 2 residual submanifold sparse convolu-
tional blocks [5] in each stage. The sparse head predicts
outputs by 3× 3 submainfold sparse convolutions. Follow-
ing CenterPoint [16], the prediction layers are only shared
among similar classes on nuScenes and shared among all
classes on Waymo.

B. Experimental results
Performance on nuScenes Validation We provide the per-
formance of VoxelNeXt on nuScenes val in Tab. A - 1.

Gaps between VoxelNeXt and VoxelNeXt-2D We ana-
lyze the gaps between VoxelNeXt and VoxelNeXt-2D on
different amounts of training data in Tab. A - 3. These mod-
els are trained on 1/4, 1/2, and full nuScenes training set, re-
spectively, and evaluated on the full validation set. It shows
that The gap is large on the 1/4 training data, while the
gaps gradually narrow as the data amount grows. Overall,
the 3D network can obtain much better performance than
its 2D counterpart at a small amount of data. Meanwhile,
VoxelNeXt-2D has the potential on a large data amount.

Resolution of Sparse Head We make an ablation study on
the resolution of prediction head in Tab. A - 2. The per-
formance decreases as the head resolution increases from
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Table A - 1. Comparison on the nuScenes validation split. This table presents detailed performance for Tab. 1 in the paper.

Method Latency mAP NDS Car Truck Bus Trailer C.V. Ped Mot Byc T.C. Bar
SECOND [14] 64 ms 50.6 62.3 81.8 51.7 66.9 37.3 15.0 77.7 42.5 17.5 57.4 59.2
CenterPoint [16] 96 ms 58.6 66.2 85.0 58.2 69.5 35.7 15.5 85.3 58.8 40.9 70.0 67.1
VoxelNeXt 66 ms 60.0 67.1 85.6 58.4 71.6 38.6 17.9 85.4 59.7 43.4 70.8 68.1

Figure A - 2. Detections of adjacent frames. We visualize predicted boxes and the corresponding query voxels, which are enlarged as red
squares. This figure is best viewed by zoom-in.

Table A - 2. Effects of the feature levels for prediction. D3−5 and
D1−5 contains multiple heads on various feature levels.

Method Head resolution mAP NDS
D3 8 56.2 64.3
D4 16 52.5 60.7
D5 32 49.0 57.9
D3−5 {8, 16, 32} 55.7 63.7
D1−5 {2, 4, 8, 16, 32} 53.9 62.2

Table A - 3. Gap between VoxelNeXt-2D and VoxelNet. mAP on
nuScenes validation with different amounts of training data.

Method 1/4 1/2 full
VoxelNeXt-2D 53.4 56.0 58.7
VoxelNeXt 56.2 58.2 60.0

Table A - 4. Results on Vehicle detection on Waymo. ∗ means de-
creasing the number of pasted instances in the ground-truth sam-
pling augmentation and increase training epochs by 6 epochs [3].

Method L1 AP/APH L2 AP/APH
VoxelNeXt 78.2 / 77.7 69.9 / 69.4
VoxelNeXt∗ 79.1 / 79.0 70.8 / 70.5

the default setting of 8 to 32. In addition, we also evalu-
ate the multi-head design of {8, 16, 32} and {2, 4, 8, 16,
32}, where results are combined from the multiple heads
with various resolutions. These multi-head models present
no better results than the single-resolution 8 network.

Performance on Waymo vehicle detection In Tab. A - 4,
we follow FSD [3] to decrease the number of pasted in-
stances in the ground-truth sampling augmentation and in-
crease training epochs by 6 epochs. This trick leads to better
results upon VoxelNeXt on the Waymo object detection.

C. Visualizations
We visualize the detections of adjacent frames in Fig. A -

2. The corresponding query voxels are depicted as red
squares. We also provide a sequence of video frames, in
both BEV and perspective views.

D. Discussions
Point-based Detectors Point-based 3D object detec-
tors [8, 10, 15, 17] are fully sparse by their very nature.
Point R-CNN [10] is a pioneer work and presents de-
cent performance on KITTI [4]. Methods of SSD se-
ries [6, 15, 18, 19], including 3DSSD [15], inherit the point-
based tradition and accelerate the methods with simplified
pipelines. VoteNet [8] is based on center voting and studies
indoor 3D object detection. However, point-based detectors
are usually used in scenes with limited points. The neigh-
borhood query operation is still unaffordable in large-scale
benchmarks [1, 11], which are dominated by voxel-based
detectors [9, 16].

Boarder Impacts VoxelNeXt replies on 3D data and its
spatially sparse distribution. It might reflect biases in data
collection, including the ones of negative societal impacts.
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