
gSDF: Geometry-Driven Signed Distance Functions
for 3D Hand-Object Reconstruction

Supplemental Material

Zerui Chen Shizhe Chen Cordelia Schmid Ivan Laptev
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In the supplementary material, we provide more details
of our method and additional results. We first present details
of our model architecture in Section A. Then in Section B,
we provide more details about solving hand poses from
predicted 3D joints using inverse kinematics. Finally, we
discuss additional experimental results in Section C.

A. Network Architecture
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Figure 1. Network architecture used for our hand and object SDF de-
coders. Following [1,3], we use five fully-connected layers (marked
in purple) for the SDF decoder. The number in the box denotes the
dimension of features.

For our SDF decoders (see Figure 2 in the original paper)
we adopt the model architecture used in [1, 3] which employ
five fully-connected layers as the decoder as illustrated in
Figure 1. Given visual feature ev ∈ R256 from the input
image (Section 3.2) and kinematic features eh ∈ R51 or
eo ∈ R72 from the query point (Section 3.3), we concatenate
them together to build a d-dimensional vector esdf and feed
it into the SDF decoder.

B. Hand Kinematics
In this section, we first introduce the forward kinematics

and inverse kinematics for the hand as shown in Figure 2(a).
Then we present how to use inverse kinematics to calculate
hand poses from predicted 3D joints in our method.
Forward Kinematics. Forward kinematics is usually defined
as the process to compute posed hand joints ψp ∈ R21×3

from given hand poses (i.e., relative rotations θ ∈ R16×3 and
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Figure 2. Illustration of hand kinematics. In Figure (a), we show
functions of forward kinematics and inverse kinematics. In Figure
(b), we show relevant joints (marked in yellow) that are involved in
the computation of the hand wrist rotation.

relative translations ϕ ∈ R16×3) and template hand joints
ψt ∈ R21×3. The kth joint in ψp can be computed as:

ψp,k = Rk · ϕk + ψp,pa(k),

Rk = Rpa(k) · exp(θk),
(1)

where Rk denotes the global rotation matrix for the kth joint
and pa(·) returns the parent index of the kth joint. exp(·)
denotes Rodrigues formula to convert θk into the form of the
rotation matrix. We follow the inverse order of the kinematic
chain to derive the global rotation for the kth joint. For
simplicity, we assume that all hands share the same template
and set the relative translation as ϕk = ψt,k−ψt,pa(k), which
simplifies the computation of Equation 1 to:

ψp,k = Rk · (ψt,k − ψt,pa(k)) + ψp,pa(k),

Rk = Rpa(k) · exp(θk).
(2)

Inverse Kinematics. Given posed hand joints ψp and tem-
plate hand joints ψt, inverse kinematics solves relative hand
poses (θ, ϕ) that defines the transformations from ψt to ψp.
As we do in forward kinematics, we also omit ϕ in the com-
putation of inverse kinematics and only solves relative hand
rotations θ. We first derive the hand wrist rotation matrix
R1 ∈ R3×3 from the orientation of three connected joints
as shown in Figure 2(b) and formulate it as an optimization
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Table 1. Comparison with state-of-the-art methods on ObMan.

Method Cr Pd Iv

Hasson et al. [2] 94.8% 1.20 6.25
Karunratanakul et al. [3] 69.6% 0.23 0.20
Chen et al. [1] 95.5% 0.66 2.81

gSDF (Ours) 89.8% 0.42 1.17

Table 2. Comparison with state-of-the-art methods on DexYCB.

Method Cr Pd Iv

Hasson et al. [2] 95.7% 1.15 9.64
Karunratanakul et al. [3] 96.0% 0.92 6.62
Chen et al. [1] 96.6% 1.08 8.40

gSDF (Ours) 95.4% 0.94 6.55

Table 3. Object reconstruction performance with different ob-
ject kinematic features on DexYCB dataset. ∗ denotes our re-
implementation of the method proposed in Ye et al. [5].

Model Obj. Pose CDo ↓ FSo@5 ↑ FSo@10 ↑
R1 Ye et al. [5] × - 0.420 0.630
R2 Ye et al.∗ × 2.09 0.404 0.663

R3 gSDF
(Ours)

× 1.78 0.411 0.676
R4 ✓ 1.71 0.418 0.689

problem:

R1 = arg min
R∈SO3

∑
i∈{5,9,13}

∥∥∥ψp,i −R · ψt,i

∥∥∥2
2
, (3)

where we can apply Singular Value Decomposition (SVD)
as in [4] to solve this problem. Then, we follow the hand
kinematic chain and solve the 3D rotation recursively for
each joint. To this end, we rewrite Equation 2 defined in
forward kinematics:

R−1
pa(k)(ψp,k − ψp,pa(k)) = exp(θk)(ψt,k − ψt,pa(k)). (4)

Then, we could derive the norm and orientation of θk by
computing the dot product and cross product between the
vectorR−1

pa(k)(ψp,k−ψp,pa(k)) and the vector ψt,k−ψt,pa(k),
respectively.

C. Experimental Results
C.1. Evaluations using additional metrics

To provide a more comprehensive view about our 3D
reconstruction performance, we also report Contact Ratio
(Cr), Penetration Depth (Pd) (cm) and Intersection Volume

Table 4. Comparing computational requirements of different models
when reconstructing hand and object meshes of resolution 128×
128× 128 from an image on an NVIDIA 1080Ti GPU.

Method Input GPU Memory Latency

[3] Image 2357Mb 2.87s
[1] Image 2847Mb 3.17s

Ours Image 3425Mb 3.23s
Ours Video 3764Mb 4.14s

Table 5. Comparision of our method with AlignSDF [1] on
DexYCB while using different numbers of backbones (BB).

Model CDh ↓ FSh@1 ↑ FSh@5 ↑ CDo ↓ FSo@5 ↑ FSo@10 ↑

[1]-1BB 0.358 0.162 0.767 1.83 0.410 0.679
Ours-1BB 0.329 0.166 0.787 1.88 0.420 0.689

[1]-2BB 0.344 0.167 0.776 1.81 0.413 0.687
Ours-2BB 0.310 0.172 0.795 1.71 0.426 0.694

Ours-3BB 0.326 0.168 0.784 1.82 0.414 0.679

(Iv) (cm3) for our models. We follow the same process as
previous works [1, 3] to compute these metrics. As shown
in Table 1 and Table 2, we can observe that our approach
can generate results with relatively low Penetration Depth
(Pd) and Intersection Volume (Iv) on both the ObMan and
DexYCB benchmarks, which suggests that our model can
produce physically plausible 3D reconstruction of hand and
object meshes. Table 4 compares the speed and memory of
different models. Our image model only slightly increases
compute compared to [1, 3].

C.2. Comparison with Ye et al. [5]

As Ye et al. [5] is a close work related to ours, we pro-
vide more ablation results for comparison with Ye et al. [5]
in Table 3. The main differences between Ye et al. [5] and
our work are three-fold. Firstly, they focus on 3D hand-held
object reconstruction instead of joint hand-object reconstruc-
tion. Secondly, they only consider the hand poses for object
reconstruction without object poses, and the hand poses are
predicted from an off-the-shelf model. Finally, a larger SDF
decoder is used in their work while we follow [1, 3] and
use a smaller decoder architecture. Therefore, in Table 3,
we only compare the object reconstruction performance. We
also re-implement Ye et al. [5] (R2 in Table 3) using the
same SDF decoder and the same predicted hand poses as
ours for a fair comparison. The model in R3 indicates that the
joint optimization of hand-object reconstruction is beneficial
compared to the model in R2. Our model in R4 uses both
hand poses and object poses to produce object kinematic
features and achieves the best performance on all the metrics
for 3D object reconstruction.
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Figure 3. Qualitative comparison between AlignSDF [1] and our gSDF. Our approach can produce more realistic hand and object
reconstruction results.

C.3. Ablations on the number of backbones

Table 5 reports additional results showing improvements
of our method over [1] while using the same number of
backbones. We note that all models in this table are trained
with the local visual features V2 defined in Table 3. We
observe that gSDF can still outperform AlignSDF [1] under
a single backbone setting. For a better comparison, we also

extend AlignSDF to two backbones and train it with the two-
stage strategy. 2BB results in Table 5 show that our method
outperforms [1] even when both methods use two backbones.
We further conduct an experiment with three backbones,
where we use three separate backbones for hand and object
pose estimation and SDF learning. We observe that 3BB
consumes more resources without improving performance.



Figure 4. Qualitative results of our model on test images from
the ObMan and DexYCB benchmarks. Our approach can produce
convincing 3D reconstruction results for different hand grasping
poses and challenging objects.

This shows that object pose estimation and SDF learning
benefit from a shared backbone in our 2BB asymmetric
architecture.

C.4. Qualitative results

In this section, we include more qualitative examples
in Figure 4 to show that our approach can reconstruct high-
quality hand meshes and object meshes for some challenging
cases. We also qualitatively compare our method with a most
recent work AlignSDF [1] on both the ObMan and DexYCB
benchmarks. As shown in Figure 3, we can observe that our
method produces more realistic reconstruction results. Even
for some objects with thin structures (e.g., bowl), our method
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Figure 5. Failure cases analysis of our method on the DexYCB
benchmark.

can still faithfully recover their 3D surfaces.

C.5. Failure cases analysis

In this section, we analyze some typical patterns for our
method on the DexYCB benchmark. As shown in Figure 5,
our method sometimes makes unreliable predictions in clut-
tered scenes. Our method uses a hand-relative coordinate
system. Hence, the reconstruction of both hands and ob-
jects may fail for scenes with heavily occluded hands. Since
our method takes monocular RGB frames as the input, re-
constructed objects, especially for big objects, might have
incorrect scales. For some objects with complex geometric
topology, it is still difficult to produce accurate 3D recon-
structions under strong motion blur.
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