Supplementary Material

A. Data annotation process

Firstly, before the annotation process, we conducted a pre-annotation process. We provided 500 clean document images, 500 annotation samples, and a preliminary version of the annotation guidelines to 47 annotators. They performed labeling on the same images without discussion.

Secondly, we compared each annotator's annotation result with the samples and quantified the matching degree and errors. If there are significant differences in the labeling of the same document element by different annotators, we will research the relevant knowledge to ensure the most accurate label and update the annotation guideline.

Finally, in the final annotation process, all annotators performed annotation according to the final, refined version of the guideline (with clear annotation requirements for all confusing cases). When annotators encounter document elements in uncertain categories, we will provide timely feedback to ensure consistency in labeling. Following this way, in the final check process, the percentage of inconsistent annotations that we should resolve is within 5%.

B. Impact of Document Size

To investigate the effect of dataset size on model performance, we trained Mask R-CNN on training sets of different proportions of $M^{6} D o c$ and evaluated the performance on a test set. As shown in Figure 1, the mean accuracy (mAP) scores initially show rapid growth, and then slowly grow as the training dataset reaches sizes of 90% and 100%. This suggests that the performance of the model can still be improved if we continue to increase the size of the $M^{6} D o c$ dataset.

Figure 1. Mask R-CNN network with ResNet50 backbone trained on increasing fractions of the $M^{6} D o c$ dataset.

C. Dataset Comparison

We conducted cross-validation experiments on the DocBank, PubLayNet, DocLayNet, and M^{6} Doc datasets using the TransDLANetm model. A direct comparison is impossible due to the difference in label sets and annotation styles. Therefore, we focus on their common labels. We mapped the 74 labels in $M^{6} D o c$ to labels consistent with DocBank, PubLayNet, and DocLayNet, respectively. The mapping rules are: (1) excluding categories that are annotated with different methods. We exclude the List-item category because the consecutive lists are segmentally labeled in DocLayNet, whereas consecutive lists are combined into one object in DocBank, PubLayNet, and M^{6} Doc. (2) removing the categories that are specific to subsets. (3) Mapping the fine-grained labels to the coarse-grained labels of DocBank, DocLayNet, and PubLayNet. The mapping is shown in Tables 1, 2 and 3.

Tables 4 and 5 show that the models trained on $M^{6} D o c$, DocLayNet, and PubLayNet datasets achieve high accuracy on their own test sets. It is worth noting that the model trained on M^{6} Doc maintained a high accuracy on the test sets of DocBank and PubLayNet, while the models trained on the DocBank and PubLayNet datasets performed inadequately on the test set of $M^{6} D o c$. This is due to the fact that DocBank and PubLayNet datasets have a single scenario and document type. It leads to poor scalability and robustness. In contrast, $M^{6} D o c$ contains a wide range of scenarios and includes document categories and scenarios from the other two datasets. It exhibits good robustness.

As shown in Table 6, the model trained on DocLayNet, or M^{6} Doc performs very well on their own test set, but has much lower performances on the foreign datasets. This is caused by the inconsistent layout of DocLayNet and the $M^{6} D o c$ datasets. Thus, it justifies the need for datasets with unseen layouts for the development document layout analysis.

D. Impact of Class Labels

There are two versions of labeling the note subset, in which the first version (note-v1) contains 27 annotation categories and the second version (note-v2) contains 18 categories. Considering the fact that people take notes with large individual variability, the note subset presents higher ambiguity in annotations than other subsets. Therefore, we map the labels with ambiguity down to the paragraph category or delete them to obtain the second version. We use Mask R-CNN to train and evaluate the note subset with annotations from these two versions. As shown in Table 7, after we reduce the ambiguity label of the model, the mAP is improved by 2.7%.

Table 1. A mapping table that maps the fine-grained labels of $M^{6} D o c$ to the coarse-grained labels of DocBank.

Before	After	Before	After
QR code	-	institute	-
advertisement	figure	jump line	-
algorithm	-	kicker	-
answer	-	lead	-
author	-	marginal note	-
barcode	-	matching	-
bill	-	mugshot	figure
blank	-	option	-
bracket	-	ordered list	-
breakout	-	other question number	-
byline	-	page number	-
caption	caption	paragraph	-
catalogue	-	part	section
chapter title	title	play	-
code	-	poem	-
correction	-	reference	reference
credit	-	sealing line	
dateline	-	second-level question number	-
drop cap	-	second-level title	section
editor's note	-	section	-
endnote	-	section title	section
examinee information	-	sidebar	-
fifth-level title	section	sub section title	section
figure	figure	subhead	section
first-level question number	-	subsub section title	section
first-level title	section	supplementary note	-
flag	-	table	table
folio	-	table caption	caption
footer	-	table note	,
footnote		teasers	-
formula	equation	third-level question number	-
fourth-level section title	section	third-level title	section
fourth-level title	section	title	title
header	-	translator	-
headline	section	underscore	-
index	-	unordered list	-
inside	-	weather forecast	-

Table 2. A mapping table that maps the fine-grained labels of $M^{6} D o c$ to the coarse-grained labels of DocLayNet.

Before	After	Before	After
QR code	-	institute	Text
advertisement	Picture	jump line	Text
algorithm	-	kicker	Text
answer	-	lead	Text
author	Text	marginal note	Page-header
barcode	-	matching	-
bill	-	mugshot	Picture
blank	-	option	-
bracket	-	ordered list	-
breakout	Text	other question number	-
byline	Text	page number	Text
caption	Caption	paragraph	Text
catalogue	-	part	Title
chapter title	Title	play	-
code	-	poem	-
correction	-	reference	-
credit	Text	sealing line	-
dateline	Text	second-level question number	-
drop cap	-	second-level title	Title
editor's note	Text	section	Text
endnote	Text	section title	Title
examinee information	-	sidebar	-
fifth-level title	Title	sub section title	Title
figure	Picture	subhead	Title
first-level question number	-	subsub section title	Title
first-level title	Title	supplementary note	-
flag	-	table	Table
folio	Section-header	table caption	Caption
footer	Page-footer	table note	-
footnote	Footnote	teasers	-
formula	Formula	third-level question number	-
fourth-level section title	Title	third-level title	Title
fourth-level title	Title	title	Title
header	Section-header	translator	Text
headline	Title	underscore	-
index	Page-header	unordered list	-
inside	-	weather forecast	-

Table 3. A mapping table that maps the fine-grained labels of $M^{6} D o c$ to the coarse-grained labels of PubLayNet.

Before	After	Before	After
QR code	-	institute	text
advertisement	figure	jump line	text
algorithm	-	kicker	text
answer	text	lead	text
author	text	marginal note	text
barcode	-	matching	-
bill	-	mugshot	figure
blank	-	option	-
bracket	-	ordered list	list
breakout	text	other question number	-
byline	text	page number	text
caption	text	paragraph	text
catalogue	-	part	title
chapter title	title	play	-
code	-	poem	-
correction	-	reference	-
credit	text	sealing line	-
dateline	text	second-level question number	-
drop cap	-	second-level title	Title
editor's note	text	section	text
endnote	text	section title	title
examinee information	-	sidebar	-
fifth-level title	title	sub section title	title
figure	figure	subhead	title
first-level question number	-	subsub section title	title
first-level title	title	supplementary note	-
flag	-	table	table
folio	text	table caption	text
footer	text	table note	text
footnote	text	teasers	-
formula	text	third-level question number	-
fourth-level section title	title	third-level title	title
fourth-level title	title	title	title
header	text	translator	text
headline	index	underscore	-
inside			

Table 4. The prediction performance (mAP@0.5-0.95) of the TransDLANet network was evaluated on the common label classes of the DocBank and M^{6} Doc datasets.

Training on		labels	
		$M^{6} D o c$	Docting on
	figure	69.77	42.67
Doc	table	72.57	43.29
	title	58.16	36.47
	mAP	66.83	40.81
DocBank	figure	20.70	58.47
	table	18.01	62.98
	title	7.26	83.70
	mAP	15.32	68.38

E. Ablation study for TransDLANet

Mask Embedding. Table 8 shows the results of mask embedding in different dimensions. Because the profile of document elements is relatively simple, a mask dimension setting of 40 can obtain the best performance.

Transformer encoder. The biggest limitation of the query-based approach is its low recall. In order to improve the recall, we differ from the ISTR approach in that we first use a standard Transformer encoder, which performs selfattentive feature learning on the implicit embedding vectors of the query vector and uses an adaptive element matching

Table 5. The prediction performance (mAP@0.5-0.95) of the TransDLANet network was evaluated on the common label classes of the PubLayNet and $M^{6} D o c$ datasets.

Training on		labels	
		$M^{6} D o c$	PubLayNet
M^{6} Doc	Text	72.56	60.21
	Title	63.50	53.26
	List	38.95	59.15
	Table	74.83	79.66
	Figure	74.23	62.45
	mAP	64.81	62.94
PubLayNet	Text	20.46	94.26
	Title	12.92	89.20
	List	7.41	95.18
	Table	12.98	97.21
	Figure	8.39	96.62
	mAP	12.43	94.49

Table 6. The prediction performance (mAP@0.5-0.95) of the TransDLANet network was evaluated on the common label classes of the DocLayNet and $M^{6} D o c$ datasets.

Training on	labels		Testing on	
		M^{6} Doc	DocLayNet	
	Caption	61.9	12.7	
	Footnote	70.2	5.8	
	Formula	47.7	9.0	
	Page-footer	71.0	8.0	
M^{6} Doc	Page-header	71.1	3.2	
	Picture	75.4	30.0	
	Section-header	73.2	5.0	
	Table	78.0	34.2	
	Text	80.0	26.2	
	Title	71.1	0.4	
	mAP	69.96	13.45	
	Caption	13.2	68.2	
	Footnote	7.0	74.7	
	Formula	2.5	61.6	
	Page-footer	8.2	54.8	
DocLayNet	Page-header	0.8	68.2	
	Picture	40.1	68.5	
	Section-header	1.6	69.8	
	Table	39.2	82.4	
	Text	45.8	83.8	
	Title	3.6	81.7	
	mAP	16.20	71.37	

mechanism to enhance the association between document instances encoded by the query vector. As shown in Table 9 , we conducted experiments to test the effectiveness of the Transformer encoder. Compared with the methods without a Transformer encoder, there is a performance gap of around 20%.

Dynamic decoder. After we get the information between queries in the Transformer encoder, we went through the Dynamic decoder to fuse the RoI and image features. We also conducted experiments to test the effectiveness of the Dynamic encoder. As shown in Table 9, compared with using the fusion feature, there is an improvement of around 10%.

Shared MLP. We use three shared-parameter MLP

Table 7. Effects of coarse and fine granularity of labels on the note dataset.

Category	note_v1	note_v2
answer	8.1	5.8
bracket	0.0	-
caption	0.0	0.1
catalogue	19.2	14.3
chapter title	18.0	18.3
fifth-level title	2.4	paragraph
figure	0.4	0.7
first-level question number	0.0	-
first-level title	13.6	paragraph
footer	62.5	58.5
formula	1.5	2.6
fourth-level title	19.5	paragraph
option	0.0	0
ordered list	3.2	2.2
page number	55.3	55.3
paragraph	28.1	41.3
part	0.0	0
second-level question number	0.0	-
second-level title	0.0	paragraph
section	12.4	17
section title	9.3	7
sub section title	5.1	5.9
supplementary note	0.0	0
table	22.7	17.4
third-level title	25.8	paragraph
underscore	0.0	-
unordered list	28.5	25.9
mAP	12.4	15.1

Table 8. Ablation study for mask embedding dimension.

Ablation study	Object Detection				Instance Segmentation			
	mAP	AP50	AP75	Recall	mAP	AP50	AP75	
embedding dimension $=20$	63.2	81.0	72.0	74.0	62.7	80.9	71.3	
embedding dimension $=40$	$\mathbf{6 4 . 5}$	$\mathbf{8 2 . 7}$	$\mathbf{7 2 . 7}$	$\mathbf{7 4 . 9}$	$\mathbf{6 3 . 8}$	$\mathbf{8 2 . 6}$	$\mathbf{7 1 . 9}$	
embedding dimension $=60$	63.4	81.1	74.6	72.3	62.8	81.0	71.3	

Table 9. Ablation study for different components.

Ablation study	Object Detection					Instance Segmentation			
				mAP	AP50	AP75	Recall		
mAP	AP50	AP75							
Ours, w/o Transformer encoder	47.8	62.6	54.4	65.4	47.3	62.6	53.9		
Ours, w/o Dynamic decoder	52.8	70.5	48.0	73.9	52.3	70.4	47.6		
Ours, w/o Shared_MLP	64.2	82.3	72.1	74.1	63.6	82.2	71.2		
Ours	$\mathbf{6 4 . 5}$	$\mathbf{8 2 . 7}$	$\mathbf{7 2 . 7}$	$\mathbf{7 4 . 9}$	$\mathbf{6 3 . 8}$	$\mathbf{8 2 . 6}$	$\mathbf{7 1 . 9}$		

branches to decode the fused interaction features for multitask learning. Compared with the methods without sharedparameter MLP, there is an improvement of around 0.3$0.8 \%$.

F. Performance of baseline and TransDLANet on the nine subsets of $M^{6} D o c$

We trained TransDLANet for 500 epochs, and the learning rate was reduced to 2×10^{-6} and 2×10^{-7} at 50% and 75% of the training epochs, respectively. We use object detection-based, instance segmentation-based, and query-based approaches to experiment with nine subsets of M^{6} Doc.

As shown in Table 10, we can see that TransDLANet obtains the best performance in almost all subsets.

Table 10. Performance comparisons on nine subsets of $M^{6} D o c$.

Method	Backbone	scientific article						magazine_ch						magazine_en					
		Object Detection			Instance Segmentation			Object Detection			Instance Segmentation			Object Detection			Instance Segmentation		
		mAP	AP50	AP75															
FCOS	ResNet-101	26.3	45.1	27.2	25.9	44.9	26.5	40.1	57.3	45.8	39.7	57.3	45.1	38.4	60.5	42.5	37.8	60.5	41.8
FoveaBox	ResNet-101	29.8	52.7	30.7	29.4	52.4	30.8	43.4	59.7	50.4	43.1	59.7	50.0	41.5	66.7	44.0	41.1	66.9	42.8
Faster R-CNN	ResNet-101	41.5	62.0	46.8	40.9	61.7	45.4	49.0	63.5	58.3	48.4	63.5	57.1	47.9	66.7	55.9	47.1	66.7	54.5
Cascade R-CNN	ResNet-101	39.8	55.5	45.7	39.4	55.8	44.8	51.3	63.5	60.0	50.7	63.4	59.5	46.3	61.3	54.0	45.9	61.2	53.3
Mask R-CNN	ResNet-101	34.9	53.5	37.6	35.0	53.3	38.3	47.1	61.1	55.4	46.4	61.0	55.2	43.9	60.8	50.2	43.2	60.7	50.3
Cascade Mask R-CNN	ResNet-101	41.8	57.3	47.4	41.4	57.1	46.6	46.4	58.6	54.0	46.0	58.6	53.9	59.4	74.7	69.0	58.5	74.9	68.3
HTC	ResNet-101	49.2	66.0	55.2	48.8	65.9	54.3	51.9	64.7	60.3	50.7	64.8	59.4	60.4	77.3	71.7	59.6	77.3	70.9
SCNet	ResNet-101	36.0	51.4	40.9	35.5	51.3	39.4	49.0	62.2	57.2	48.3	62.2	56.9	49.1	66.3	57.3	48.2	66.2	56.2
SOLO	ResNet-101	32.1	51.1	33.9	32.8	53.5	33.9	35.6	53.0	39.9	37.1	54.6	42.1	34.4	59.9	32.8	36.1	59.6	34.5
SOLOv2	ResNet-101	33.5	54.0	35.9	33.0	54.5	36.0	33.8	51.8	36.5	35.8	53.7	39.5	45.3	71.1	49.4	47.9	72.7	54.0
Deformable DETR	ResNet-101	32.3	43.7	35.8	32.0	43.7	35.3	40.2	55.1	45.8	39.9	55.0	45.0	51.1	72.0	58.6	50.8	71.9	57.7
QueryInst	ResNet-101	32.0	46.2	36.3	31.6	45.8	35.5	37.4	49.7	43.2	37.6	50.4	43.5	44.8	60.6	53.8	44.5	61.1	53.2
ISTR	ResNet-101	61.8	80.3	69.7	61.1	80.2	70.2	50.5	63.4	58.4	50.5	63.5	58.4	66.3	83.0	75.6	65.7	83.0	75.0
Ours	ResNet-101	59.7	78.7	68.2	59.1	78.5	67.0	50.2	63.0	57.7	49.8	62.9	57.3	68.2	85.0	77.2	68.2	85.0	77.2
Method	Backbone	note						newspaper_ch						newspaper_en					
		Object Detection			InstanceSegmentation			Object Detection			InstanceSegmentation			Object Detection			InstanceSegmentation		
		mAP	AP50	AP75															
GFL	ResNet-101	11.1	19.1	11.7	11.0	19.1	12.1	22.1	35.9	24.7	21.8	35.9	23.9	20.5	30.1	22.8	20.3	30.0	22.7
FCOS	ResNet-101	19.1	36.7	18.7	18.9	36.5	17.8	22.7	41.7	21.1	22.5	41.6	21.7	17.8	32.6	17.4	17.5	32.4	16.8
FoveaBox	ResNet-101	19.8	36.2	21.5	19.5	36.3	20.3	21.5	37.6	22.3	21.3	37.5	22.1	35.5	56.4	39.6	34.9	56.3	37.7
Faster R-CNN	ResNet-101	29.3	46.1	33.9	28.9	46.1	32.9	32.2	50.6	33.9	32.3	50.8	33.9	34.3	50.7	39.4	34.0	50.7	39.3
Cascade R-CNN	ResNet-101	22.5	34.9	27.3	22.3	34.9	27.3	27.7	42.6	29.8	27.7	42.7	30.0	26.3	36.5	29.6	26.0	36.3	29.3
Mask R-CNN	ResNet-101	15.1	27.6	15.3	15.2	27.8	14.6	21.2	36.9	21.2	20.5	36.2	19.9	19.9	31.1	21.9	19.7	31.0	21.8
Cascade Mask R-CNN	ResNet-101	24.3	36.7	28.9	24.0	36.7	28.0	43.2	60.8	47.1	42.9	60.7	47.1	23.4	32.8	26.9	23.1	32.7	26.6
HTC	ResNet-101	36.7	53.4	43.4	36.7	53.7	42.3	36.3	53.3	38.8	5.6	53.1	37.9	43.7	57.3	48.4	43.4	57.1	48.1
SCNet	ResNet-101	27.9	41.9	33.8	27.9	41.6	33.0	20.0	33.0	20.7	19.9	32.8	20.7	19.3	27.2	22.3	19.2	27.2	21.9
SOLO	ResNet-101	22.2	38.0	22.8	22.1	39.3	23.8	30.5	48.0	33.1	30.9	48.5	34.2	14.5	32.7	11.6	14.9	31.8	14.1
SOLOv2	ResNet-101	26.9	44.1	28.5	29.0	44.7	32.7	24.5	40.2	26.1	26.2	42.5	28.0	30.7	50.1	31.5	32.7	51.8	34.9
Deformable DETR	ResNet-101	24.2	33.5	28.5	23.9	33.5	28.3	29.7	43.8	32.4	29.6	43.7	32.3	34.2	49.7	38.1	34.1	49.3	38.4
QueryInst	ResNet-101	23.3	35.5	27.1	23.3	35.5	26.5	28.9	43.6	31.5	29.3	44.7	31.8	36.5	48.2	41.4	38.4	51.2	43.4
ISTR	ResNet-101	48.6	63.9	57.3	48.5	63.9	56.7	52.7	68.3	58.9	52.3	68.4	58.0	61.0	73.9	68.8	60.7	73.9	68.1
Ours	ResNet-101	44.1	60.5	50.7	43.6	60.3	49.9	59.4	78.1	65.9	59.0	78.1	65.3	64.0	78.4	73.3	63.6	78.2	72.6
Method	Backbone	test paper						textbook						book					
		Object Detection			Instance Segmentation			Object Detection			Instance Segmentation			Object Detection			Instance Segmentation		
		mAP	AP50	AP75															
GFL	ResNet-101	44.4	65.4	52.1	43.4	65.1	49.6	38.7	57.1	44.9	37.1	57.0	42.5	8.0	15.8	6.8	6.8	15.5	4.7
FCOS	ResNet-101	37.9	59.7	43.0	36.6	59.6	39.4	33.2	52.7	38.0	31.6	52.5	34.8	10.3	23.5	6.7	7.9	20.7	4.2
FoveaBox	ResNet-101	42.8	66.8	48.9	41.4	66.8	46.3	34.5	54.2	39.7	33.2	54.1	37.3	21.6	37.6	22.3	21.3	37.5	22.1
Faster R-CNN	ResNet-101	52.0	74.1	60.6	51.1	74.2	59.8	43.6	62.7	52.7	42.4	62.6	50.2	14.5	27.2	13.5	12.0	26.3	9.2
Cascade R-CNN	ResNet-101	54.3	73.4	63.0	53.8	73.5	62.7	47.1	64.7	55.4	45.8	64.6	54.2	9.2	16.3	8.9	7.7	16.2	6.0
Mask R-CNN	ResNet-101	49.1	70.2	56.9	48.1	70.0	55.7	40.3	58.1	48.3	39.8	58.0	47.5	7.1	14.9	5.7	7.6	15.0	5.9
Cascade Mask R-CNN	ResNet-101	52.6	71.7	61.1	52.3	71.8	60.4	45.7	62.8	54.1	44.4	62.7	52.3	10.8	18.8	11.5	8.8	18.4	7.1
HTC	ResNet-101	57.9	77.7	66.9	57.2	77.6	65.9	51.2	69.6	60.3	50.5	69.6	59.1	19.6	29.6	24.1	18.8	29.5	22.4
SCNet	ResNet-101	54.8	75.5	64.2	53.9	75.3	62.6	44.6	62.7	51.8	43.6	62.5	50.3	6.6	12.2	6.3	6.7	12.2	6.3
SOLO	ResNet-101	36.2	59.1	38.5	36.2	61.1	37.9	31.8	49.7	35.1	31.1	50.3	34.8	5.8	13.9	4.0	3.2	10.0	1.1
SOLOv2	ResNet-101	33.0	55.7	33.3	34.5	57.4	36.5	33.7	54.6	36.6	35.0	55.3	38.2	17.3	29.8	17.2	15.6	29.2	16.4
Deformable DETR	ResNet-101	53.7	75.2	60.8	53.5	75.3	60.2	46.6	64.6	53.8	45.0	64.4	51.5	14.0	21.7	15.5	10.1	20.0	9.0
QueryInst	ResNet-101	44.0	60.9	50.4	43.4	61.2	49.9	35.7	50.0	41.3	35.5	50.1	41.1	10.7	17.1	11.8	10.5	17.2	11.6
ISTR	ResNet-101	60.4	80.9	68.5	60.1	80.9	67.9	50.1	68.2	58.7	49.5	68.1	57.3	29.0	39.9	35.4	28.4	39.8	34.4
Ours	ResNet-101	60.7	81.9	68.0	60.3	82.2	66.9	51.7	70.1	60.3	51.2	70.1	59.5	28.3	41.0	33.0	27.9	40.7	33.0

In the following, we will specifically analyze the performance of TransDLANet on different datasets. Tables 11, $12,13,14,15,16,17,18$, and 19 show the APs of different categories in each of the nine subsets. Figure 2 shows the visualization results of TransDLANet trained on and inferred on nine subsets.

As shown in Table 11, we can see that TransDLANet obtains low precision in the formula, ordered list, and table note categories in the scientific article subset. The visualization results show that the formula category's low precision is attributed to many small formulas that are not detected, and the low precision of the ordered list is due to its easy identification as a paragraph category. The low precision of the page number category is due to the small target of this
category, and the insufficient resolution during training and inference. We can consider increasing the resolution of the images during training and inference to improve this phenomenon.

As shown in Table 12, the advertisement, byline, ordered list, poem, and table categories are almost unrecognizable. This is due to the small training set of these categories in the magazine_ch subset, which contains only $2,12,2,15$, and 5 training samples, respectively. Therefore, the model cannot learn the characteristics of these categories well. This phenomenon is alleviated in the total dataset of $M^{6} D o c$ mixed with nine subsets. From the visualization results, we can see that the unordered list is confused during inference. This is because the training samples of the unordered list
are small, and most of them are annotated with large areas, which leads to overfitting when the model learns this category. We can also see that the poem category may be recognized as the unordered list category because them has a uniform hanging indent format. Additionally, since the layout logic of "China National Geographic" is very different from other Chinese magazines, especially in the headline and subhead category, incorrect detection of headlines appears more frequently in this magazine.

As shown in Table 13, the TransDLANet model can process the magazine_en dataset well, and the accuracy of each category is relatively balanced, except for the footnote category. We can see from the visualization results that the main reason for the low accuracy of the footnote category is that the large footnote category cannot be identified, and we can also see that the current model is not able to handle rotated images. We can consider more data enhancements to adapt to this scenario.

As shown in Table 14, since the note subset contains handwritten notes, it does not have apparent font size and color differences like published printed documents, and there is also great individual variability in personal notes. Hence, almost all models fail to obtain better results. In particular, the "figure" category's accuracy is much lower than other subsets. This is because the main difference between handwritten and printed documents is that figures in the former are drawn by hand, which led to no significantly different color features between figure, paragraph, and table instances. The visualization results show that the formulas of both mathematics and chemistry are almost unrecognizable, probably because the format of handwritten formulas is not as strict as that of published printed documents.

As shown in Tables 15 and 16, the model trained on the newspaper_ch subset cannot identify the byline and index categories, while the newspaper_en subset cannot identify the ordered list and unordered list categories. This is mainly because the annotated samples of these categories are too limited. From the visualization results, we can see that newspapers of this type have very dense text, so there are more missed detections of paragraph instances than in other subsets. This can be improved by increasing the number of pre-defined queries or the number of epochs for training. Moreover, we can think about how to solve the problem of low recall with query-based methods.

As shown in Table 17, the TransDLANet model can accurately identify and locate different categories of layout elements in educational documents. This phenomenon can be attributed to the relatively low ambiguity and confusion among categories in the layout analysis of educational documents. However, TransDLANet still faces some limitations and challenges. For example, the low precision of categories with fewer annotation samples, such as seal lines, unordered lists, candidate information areas, footnotes, and
other question numbers, with training set sizes of $3,5,8$, 30 , and 42 , respectively. This is because the sample distribution of different categories in the dataset is imbalanced, so some categories have very few samples, which results in poor performance of the model in these categories. Therefore, future research should focus on those categories with fewer samples to improve the performance of the model.

As shown in Table 18, the second-level title can almost not be recognized, and the third-level question number and fourth-level title are incorrectly identified as ordered lists or paragraphs because they are similar to ordered lists and the training sample size is small. This suggests that the performance of the model is still inadequate for labels with a small number of training samples and that more samples and better data enhancement methods are needed to improve its recognition performance.

Because the book subset comes from 50 books and only six graphs are trained for each book, processing this subset well is very difficult. As shown in Tables 10, and 19, all the models cannot obtain good results, and almost all the categories cannot obtain high AP. In addition, the reason for the AP of the "drop cap" category being nan is that there is only one drop cap annotation in the book subset, which cannot be equally assigned to training, evaluation, and test sets. However, to maintain consistent annotation with other datasets, we kept this category. The visualization results are shown in Figure 2.

Table 11. The performance of TransDLANet on the scientific article test set.

Category	AP	Category	AP	Category	AP
algorithm	84.379	author	42.522	caption	75.633
code	50.000	drop cap	60.000	figure	79.765
footer	50.217	footnote	66.101	formula	26.691
fourth-level section title	48.513	header	66.968	institute	57.636
marginal note	78.634	ordered list	21.704	page number	38.226
paragraph	87.656	reference	94.281	section title	58.769
sub section title	62.701	subsub section title	31.692	table	90.409
table caption	64.005	table note	22.038	title	68.761
unordered list	65.143				

Table 12. The performance of TransDLANet on the magazine_ch test set.

Category	AP	Category	AP	Category	AP
QR code	76.832	advertisement	0.130	author	54.551
byline	0.652	caption	50.815	credit	73.215
figure	77.505	footer	73.403	header	79.318
headline	70.126	ordered list	0.009	page number	64.164
paragraph	91.514	poem	0.000	section	74.005
subhead	59.667	supplementary note	78.409	table	0.125
translator	53.897	unordered list	25.326		

G. Discussion of Failure Cases of DocLayNet and PubLayNet datasets

Figures 3, 4 show some of the failures of the TransDLANet model on the DocLayNet and PubLayNet datasets.

Figure 2. The Visualization results of TransDLANet trained on and inferred on nine subsets. Zoom in for better view.

Table 13. The performance of TransDLANet on the magazine_en test set.

Category	AP	Category	AP	Category	AP
QR code	80.000	advertisement	72.343	author	48.984
breakout	83.364	byline	45.858	caption	68.649
credit	60.942	dateline	61.780	drop cap	66.936
figure	79.911	footer	72.285	footnote	35.439
header	79.068	headline	72.863	lead	82.744
ordered list	72.376	page number	59.108	paragraph	92.683
poem	50.495	section	69.735	sidebar	65.461
subhead	62.719	supplementary note	60.192	unordered list	91.683

Table 14. The performance of TransDLANet on the note test set.

Category	AP	Category	AP	Category	AP
answer	44.210	caption	21.512	catalogue	87.947
chapter title	58.599	figure	23.948	footer	70.653
formula	13.688	option	43.396	ordered list	25.549
page number	55.228	paragraph	55.782	part	21.201
section	14.880	section title	59.468	sub section title	48.215
supplementary note	0.332	table	91.555	unordered list	58.368

As shown in Figures 3 and 4, the TransDLANet model trained on both the DocLayNet and PubLayNet datasets suffers from a missing detection problem during inference.

Table 15. The performance of TransDLANet on the newspaper_ch test set.

Category	AP	Category	AP	Category	AP
QR code	58.442	advertisement	63.137	author	46.547
byline	0.000	caption	43.161	credit	34.098
dateline	59.176	editor's note	50.666	figure	69.642
flag	97.481	folio	69.364	footer	63.756
headline	73.578	index	0.129	jump line	54.670
kicker	61.401	lead	77.944	mugshot	74.719
ordered list	26.165	page number	50.256	paragraph	85.700
section	79.598	sidebar	94.422	subhead	62.211
supplementary note	66.535	teasers	86.906	unordered list	53.598

Table 16. The performance of TransDLANet on the newspaper_en test set.

Category	AP	Category	AP	Category	AP
advertisement	73.364	author	49.603	barcode	86.667
bill	93.366	breakout	82.382	byline	63.751
caption	63.347	correction	19.507	credit	54.481
dateline	41.799	drop cap	76.069	figure	81.021
flag	94.422	folio	76.453	headline	83.541
index	80.572	inside	86.799	jump line	65.844
kicker	48.362	lead	74.842	mugshot	69.183
ordered list	2.106	page number	68.168	paragraph	91.322
play	100.000	section	79.960	sidebar	31.977
subhead	58.967	supplementary note	54.872	table	34.636
table caption	14.622	teasers	74.455	unordered list	0.000
weather forecast	100.000				

Table 17. The performance of TransDLANet on the test paper test set.

Category	AP	Category	AP	Category	AP
QR code	91.122	author	59.273	bracket	69.809
byline	71.388	caption	51.183	endnote	30.768
examinee information	14.891	figure	74.224	first-level question number	63.711
first-level title	76.011	footer	72.801	formula	54.910
header	76.675	headline	59.850	option	85.754
ordered list	75.898	other question number	19.441	page number	59.033
paragraph	80.328	part	71.907	poem	82.214
sealing line	24.158	second-level question number	65.567	second-level title	76.418
supplementary note	63.752	table	91.735	table caption	39.857
third-level question number	43.966	title	81.686	underscore	53.332

Table 18. The performance of TransDLANet on the textbook test set.

Category	AP	Category	AP	Category	AP
answer	17.774	author	30.492	blank	41.271
bracket	64.726	byline	30.133	caption	65.620
catalogue	42.970	chapter title	67.027	credit	22.500
dateline	35.842	figure	69.836	first-level question number	50.457
first-level title	73.183	footer	74.969	footnote	78.615
formula	36.004	fourth-level title	18.654	header	72.671
headline	71.452	index	66.639	lead	81.441
marginal note	77.873	matching	22.620	option	50.744
ordered list	22.818	page number	58.093	paragraph	73.979
part	73.818	poem	29.581	second-level question number	56.581
second-level title	0.345	section	74.510	section title	72.277
sub section title	69.981	subhead	53.934	supplementary note	24.827
table	76.178	table caption	54.939	third-level question number	0.000
third-level title	46.164	underscore	54.956	unordered list	63.386

The main reason for the low overall accuracy of our model is that we have fixed the number of queries in advance. Therefore, if there are multiple queries corresponding to a single instance, our model may fail to detect all the instances in the images. It is worth noting that the visualization results of PubLayNet inference also show some tilt detection errors, which may be caused by noise in the PubLayNet dataset.

Table 19. The performance of TransDLANet on the book test set.

Category	AP	Category			
QR code	0.000	answer	AP	Category	AP
bracket	19.010	byline	0.000	author	28.297
catalogue	0.000	chapter title	2.574	caption	40.736
drop cap	nan	endnote	21.729	code	30.138
figure	55.424	first-level question number	23.575	fifth-level title	0.085
footer	47.277	footnote	first-level title	46.635	
fourth-level title	7.271	header	0.000	formula	21.660
index	83.414	institute	69.067	headline	25.235
marginal note	52.954	option	47.772	jump line	0.000
page number	56.186	paragraph	17.763	ordered list	10.103
reference	64.406	second-level question number	60.591	poem	0.172
second-level title	0.600				
section	38.086	section title	40.258	sub section title	42.836
subsub section title	24.022	supplementary note	0.000	table	58.094
table caption	41.820	third-level title	28.857	title	75.264
underscore	0.000	unordered list	14.470		

Figure 3. Failure Cases of DocLayNet datasets.

Figure 4. Failure Cases of PubLayNet datasets.

H. Annotation samples of $M^{6} D o c$

Figure 5 shows annotation samples of $M^{6} D o c$ dataset. There are a total of 74 annotation categories in our dataset. Among them, scientific article, textbook, book, test paper, magazine_ch, magazine_en, newspaper_ch, newspaer_en, and note subsets with $25,42,44,31,22,24,27,34$, and 18 categories, respectively. Detailed category statistics of the training, validation, and test sets for the nine subsets are shown in Tables 20, 21, 22, 23, 24, 25, 26, 27, and 28.

Figure 5. Example annotations of the $M^{6} D o c$. Zoom in for better view.

Table 20. Scientific article subset overview.

Category	Training			Validate		Testing	
	Number	\%	Number	\%	Number	\%	
algorithm	12	0.14	3	0.21	12	0.28	
author	51	0.62	8	0.56	29	0.67	
caption	371	4.48	64	4.51	174	4.03	
code	2	0.02	2	0.14	1	0.02	
drop cap	2	0.02	1	0.07	1	0.02	
figure	368	4.44	63	4.44	184	4.26	
footer	32	0.39	7	0.49	17	0.39	
footnote	128	1.54	18	1.27	65	1.51	
formula	2081	25.11	363	25.60	1106	25.62	
fourth-level section title	15	0.18	3	0.21	19	0.44	
header	219	2.64	31	2.19	131	3.03	
institute	49	0.59	8	0.56	24	0.56	
marginal note	40	0.48	5	0.35	20	0.46	
ordered list	54	0.65	12	0.85	38	0.88	
page number	369	4.45	59	4.16	175	4.05	
paragraph	2916	35.18	522	36.81	1551	35.93	
reference	134	1.62	20	1.41	57	1.32	
section title	432	5.21	76	5.36	221	5.12	
sub section title	412	4.97	71	5.01	191	4.42	
subsub section title	80	0.97	17	1.20	48	1.11	
table	181	2.18	22	1.55	88	2.04	
table caption	177	2.14	19	1.34	80	1.85	
table note	8	0.10	2	0.14	5	0.12	
title	46	0.56	6	0.42	25	0.58	
unordered list	109	1.32	16	1.13	55	1.27	
Total	$\mathbf{8 2 8 8}$	$\mathbf{1 0 0}$	$\mathbf{1 4 1 8}$	$\mathbf{1 0 0}$	$\mathbf{4 3 1 7}$	$\mathbf{1 0 0}$	

Table 21. Textbook subset overview.

Category	Training		Validate		Testing	
	Number	\%	Number	\%	Number	\%
answer	27	0.12	8	0.22	20	0.18
author	25	0.11	7	0.19	13	0.12
blank	189	0.81	58	1.59	90	0.80
bracket	237	1.01	34	0.93	74	0.66
byline	34	0.15	8	0.22	32	0.29
caption	867	3.71	157	4.31	423	3.77
catalogue	7	0.03	3	0.08	4	0.04
chapter title	164	0.70	23	0.63	82	0.73
credit	1	0.00	1	0.03	1	0.01
dateline	11	0.05	3	0.08	3	0.03
figure	2239	9.57	375	10.29	1106	9.87
first-level question number	1634	6.98	245	6.72	695	6.20
first-level title	158	0.68	15	0.41	74	0.66
footer	480	2.05	85	2.33	241	2.15
footnote	158	0.68	26	0.71	69	0.62
formula	2164	9.25	304	8.34	1031	9.20
fourth-level title	7	0.03	8	0.22	15	0.13
header	434	1.85	64	1.76	224	2.00
headline	494	2.11	91	2.50	240	2.14
index	97	0.41	15	0.41	47	0.42
lead	46	0.20	12	0.33	22	0.20
marginal note	165	0.71	29	0.80	75	0.67
matching	7	0.03	1	0.03	8	0.07
option	110	0.47	12	0.33	33	0.29
ordered list	159	0.68	22	0.60	71	0.63
page number	1183	5.06	193	5.29	590	5.26
paragraph	8223	35.14	1245	34.15	3999	35.68
part	412	1.76	70	1.92	219	1.95
poem	39	0.17	9	0.25	19	0.17
second-level question number	676	2.89	48	1.32	295	2.63
second-level title	2	0.01	1	0.03	1	0.01
section	921	3.94	153	4.20	470	4.19
section title	223	0.95	51	1.40	88	0.79
sub section title	31	0.13	6	0.16	14	0.12
subhead	93	0.40	22	0.60	43	0.38
supplementary note	21	0.09	2	0.05	16	0.14
table	273	1.17	51	1.40	136	1.21
table caption	44	0.19	5	0.14	16	0.14
third-level question number	11	0.05	1	0.03	7	0.06
third-level title	50	0.21	18	0.49	35	0.31
underscore	1066	4.56	125	3.43	438	3.91
unordered list	217	0.93	40	1.10	130	1.16
Total	23399	100	3646	100	11209	100

Table 22. Newspaper_ch subset overview.

Category	Training			Validate		Testing	
	Number	\%	Number	\%	Number	\%	
QR code	12	0.05	6	0.16	11	0.09	
advertisement	28	0.12	10	0.27	21	0.18	
author	1622	7.03	260	7.03	808	6.91	
byline	2	0.01	1	0.03	11	0.09	
caption	375	1.63	70	1.89	199	1.70	
credit	390	1.69	73	1.97	201	1.72	
dateline	562	2.44	87	2.35	277	2.37	
editor's note	39	0.17	4	0.11	9	0.08	
figure	797	3.46	124	3.35	389	3.33	
flag	20	0.09	4	0.11	9	0.08	
folio	598	2.59	100	2.70	301	2.57	
footer	224	0.97	18	0.49	90	0.77	
headline	1327	5.75	212	5.73	643	5.50	
index	4	0.02	1	0.03	3	0.03	
jump line	128	0.56	19	0.51	54	0.46	
kicker	359	1.56	68	1.84	169	1.45	
lead	193	0.84	34	0.92	88	0.75	
mugshot	13	0.06	4	0.11	6	0.05	
ordered list	83	0.36	17	0.46	40	0.34	
page number	280	1.21	46	1.24	140	1.20	
paragraph	14520	62.96	2281	61.63	7430	63.56	
section	284	1.23	46	1.24	142	1.21	
sidebar	3	0.01	3	0.08	3	0.03	
subhead	1034	4.48	188	5.08	573	4.90	
supplementary note	146	0.63	21	0.57	65	0.56	
teasers	12	0.05	1	0.03	4	0.03	
unordered list	8	0.03	3	0.08	4	0.03	
Total	$\mathbf{2 3 0 6 3}$	$\mathbf{1 0 0}$	$\mathbf{3 7 0 1}$	$\mathbf{1 0 0}$	$\mathbf{1 1 6 9 0}$	$\mathbf{1 0 0}$	

Table 23. Newspaper_en subset overview.

Category	Training		Validate		Testing	
	Number	\%	Number	\%	Number	\%
advertisement	154	0.73	25	0.75	92	0.88
author	133	0.63	28	0.84	66	0.63
barcode	10	0.05	1	0.03	3	0.03
bill	3	0.01	2	0.06	3	0.03
breakout	298	1.42	49	1.47	139	1.34
byline	839	3.99	109	3.26	369	3.55
caption	634	3.02	97	2.90	340	3.27
correction	9	0.04	1	0.03	6	0.06
credit	567	2.70	97	2.90	278	2.67
dateline	151	0.72	23	0.69	78	0.75
drop cap	188	0.89	30	0.90	118	1.13
figure	799	3.80	127	3.80	416	4.00
flag	10	0.05	1	0.03	3	0.03
folio	844	4.02	113	3.38	384	3.69
headline	986	4.69	147	4.40	454	4.36
index	83	0.39	13	0.39	30	0.29
inside	16	0.08	1	0.03	5	0.05
jump line	252	1.20	43	1.29	125	1.20
kicker	157	0.75	23	0.69	88	0.85
lead	201	0.96	29	0.87	71	0.68
mugshot	60	0.29	7	0.21	40	0.38
ordered list	6	0.03	4	0.12	4	0.04
page number	290	1.38	49	1.47	149	1.43
paragraph	13435	63.92	2142	64.13	6680	64.21
play	10	0.05	3	0.09	2	0.02
section	343	1.63	63	1.89	168	1.61
sidebar	48	0.23	6	0.18	21	0.20
subhead	215	1.02	30	0.90	96	0.92
supplementary note	172	0.82	31	0.93	99	0.95
table	55	0.26	25	0.75	43	0.41
table caption	13	0.06	11	0.33	25	0.24
teasers	20	0.10	6	0.18	3	0.03
unordered list	6	0.03	1	0.03	3	0.03
weather forecast	10	0.05	3	0.09	3	0.03
Total	$\mathbf{2 1 0 1 7}$	$\mathbf{1 0 0}$	$\mathbf{3 3 4 0}$	$\mathbf{1 0 0}$	$\mathbf{1 0 4 0 4}$	$\mathbf{1 0 0}$

Table 24. Book subset overview.

Category	Training		Validate		Testing	
	Number	\%	Number	\%	Number	\%
QR code	3	0.05	1	0.10	3	0.11
answer	4	0.07	1	0.10	1	0.04
author	15	0.27	1	0.10	4	0.15
bracket	11	0.20	1	0.10	4	0.15
byline	5	0.09	1	0.10	3	0.11
caption	77	1.37	12	1.25	33	1.24
catalogue	2	0.04	1	0.10	1	0.04
chapter title	40	0.71	5	0.52	17	0.64
code	60	1.07	5	0.52	30	1.13
drop cap	1	0.02	0	0.00	0	0.00
endnote	5	0.09	2	0.21	6	0.23
fifth-level title	13	0.23	2	0.21	20	0.75
figure	113	2.01	18	1.88	50	1.88
first-level question number	156	2.78	39	4.06	51	1.92
first-level title	24	0.43	3	0.31	23	0.86
footer	50	0.89	8	0.83	27	1.01
footnote	4	0.07	1	0.10	1	0.04
formula	1330	23.67	250	26.04	527	19.80
fourth-level title	63	1.12	5	0.52	51	1.92
header	206	3.67	36	3.75	102	3.83
headline	53	0.94	3	0.31	30	1.13
index	30	0.53	7	0.73	20	0.75
institute	11	0.20	1	0.10	4	0.15
jump line	1	0.02	1	0.10	1	0.04
marginal note	33	0.59	3	0.31	6	0.23
option	15	0.27	1	0.10	6	0.23
ordered list	141	2.51	19	1.98	76	2.86
page number	273	4.86	45	4.69	140	5.26
paragraph	2156	38.38	353	36.77	1050	39.46
poem	6	0.11	1	0.10	1	0.04
reference	15	0.27	3	0.31	5	0.19
second-level question number	103	1.83	16	1.67	30	1.13
second-level title	4	0.07	2	0.21	2	0.08
section	148	2.63	23	2.40	78	2.93
section title	99	1.76	13	1.35	59	2.22
sub section title	79	1.41	21	2.19	35	1.32
subsub section title	21	0.37	4	0.42	23	0.86
supplementary note	3	0.05	0	0.00	1	0.04
table	81	1.44	14	1.46	41	1.54
table caption	26	0.46	3	0.31	11	0.41
third-level title	96	1.71	26	2.71	59	2.22
title	11	0.20	1	0.10	4	0.15
underscore	15	0.27	3	0.31	10	0.38
unordered list	16	0.28	5	0.52	15	0.56
Total	5618	100	960	100	2661	100

Table 25. Magazine_ch subset overview.

Category	Training		Validate		Testing	
	Number	\%	Number	\%	Number	\%
QR code	33	0.29	6	0.32	5	0.09
advertisement	2	0.02	1	0.05	1	0.02
author	421	3.71	73	3.89	182	3.28
byline	12	0.11	2	0.11	37	0.67
caption	397	3.50	53	2.82	206	3.72
credit	271	2.39	42	2.24	120	2.17
figure	1020	9.00	168	8.95	488	8.81
footer	311	2.74	52	2.77	162	2.92
header	369	3.25	56	2.98	181	3.27
headline	491	4.33	82	4.37	214	3.86
ordered list	2	0.02	1	0.05	5	0.09
page number	569	5.02	95	5.06	285	5.14
paragraph	6542	57.69	1076	57.33	3234	58.36
poem	15	0.13	3	0.16	2	0.04
section	218	1.92	33	1.76	107	1.93
subhead	499	4.40	109	5.81	231	4.17
supplementary note	60	0.53	9	0.48	28	0.51
table	5	0.04	1	0.05	1	0.02
translator	73	0.64	11	0.59	38	0.69
unordered list	29	0.26	4	0.21	14	0.25
Total	$\mathbf{1 1 3 3 9}$	$\mathbf{1 0 0}$	$\mathbf{1 8 7 7}$	$\mathbf{1 0 0}$	$\mathbf{5 5 4 1}$	$\mathbf{1 0 0}$

Table 28. Note subset overview.

Category	Training			Validate		Testing	
	Number	\%	Number	\%	Number	\%	
answer	134	3.32	21	3.15	56	2.59	
caption	21	0.52	4	0.60	17	0.79	
catalogue	30	0.74	6	0.90	14	0.65	
chapter title	41	1.02	5	0.75	25	1.16	
figure	62	1.54	10	1.50	38	1.76	
footer	101	2.50	15	2.25	47	2.17	
formula	451	11.17	101	15.14	208	9.62	
option	27	0.67	6	0.90	8	0.37	
ordered list	228	5.65	39	5.85	117	5.41	
page number	304	7.53	52	7.80	149	6.89	
paragraph	2244	55.57	342	51.27	1281	59.25	
part	3	0.07	2	0.30	2	0.09	
section	29	0.72	2	0.30	9	0.42	
section title	143	3.54	31	4.65	74	3.42	
sub section title	45	1.11	9	1.35	29	1.34	
supplementary note	8	0.20	3	0.45	9	0.42	
table	69	1.71	6	0.90	35	1.62	
unordered list	98	2.43	13	1.95	44	2.04	
Total	$\mathbf{4 0 3 8}$	$\mathbf{1 0 0}$	$\mathbf{6 6 7}$	$\mathbf{1 0 0}$	$\mathbf{2 1 6 2}$	$\mathbf{1 0 0}$	

