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A. Model Architecture
The detailed architecture of our framework is shown in

Fig. 1. We follow the MLPs design in NeRF [6], and a
panoptic branch is added in the middle of the MLPs for gen-
erating panoptic feature fp and predicting semantic logits s.
PE(·) is the positional encoding function and + denotes the
concatenate operation.

Figure 1. PCFF network architecture. The MLPs accept the 3D
position x and direction d as input, and output the view-dependent
color c, the view-invariant density σ, semantic logits s and panop-
tic feature fp.

B. Dataset Details
ScanNet. In our experiment, we choose 3 scenes including
‘0038 00’, ‘0113 00’, and ‘0192 00’. The resolution of im-
ages and panoptic annotations are resized to 640×480. The
train/test images are evenly sampled in each chosen scene,
and our data split will be released with the code.
Replica. In our experiment, we choose 6 one-room scenes
including ‘room 0’, ‘room 1’, ‘room 2’, ‘office 2’, ‘of-
fice 3’, and ‘office 4’. The resolution of images and panop-
tic annotations are resized to 640 × 480. We adopt the
train/testing data split as SemanticNeRF [10] proposed.
ToyDesk. ToyDesk dataset contains two scenes ‘desk 1’

and ‘desk 2’ with 96 and 151 posed images and correspond-
ing instance annotations, which resolutions are 640 × 353
and 640× 480 respectively. We adopt the train/testing data
split as ObjectNeRF [8] proposed. Since there are no se-
mantic ground truth annotations in this dataset, we directly
divide the scene into two semantic classes including fore-
ground and background, where the foreground segmenta-
tion is the union of all instances.

C. Implementation Details

C.1. Compared Methods

SemanticNeRF [10] is an extension of NeRF that jointly
encode geometry and semantics for semantic labeling. They
use a batch size of 1024 rays. Although SemanticNeRF is
not specially designed for object-compositional represen-
tation, instance-level scene decomposition can be achieved
when using ground truth instance annotations to supervise
this method.
ObjectNeRF [8] uses a two-branch framework to build
object-compositional representation, where one branch is
used for individual object modeling while the other is for
scene representation. They use a batch size of 2048 rays.
We note that their method utilizes the ground truth 3D point
clouds of the target scene for additional depth supervision
which is not used in other compared methods, thus we re-
move the depth loss in their model training for a fair com-
parison.
ObjectSDF [7] is a VolSDF [9]-based framework and
achieves remarkable object extraction and reconstruction
results by building an explicit connection between the in-
stance predictions and object SDFs. They use a batch size
of 1024 rays. We note that their full training needs 10000
epochs which costs almost 7 days, thus we properly shorten
the required training epochs to 1500 for a fair comparison
in time with other methods.
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C.2. 2D Panoptic Segmentation Networks

We adopt three 2D panoptic segmentation networks
including PanopticFPN [4], MaskFormer [3], and
Mask2Former [2] for predicting network-inferred la-
bels. All networks are employed by MMDetection [1] and
pre-trained on COCO [5] dataset. These networks provide
various pre-trained versions with different backbones (e.g.
ResNet50). Due to our aim to generate accurate labels
on real-world scenes, we select the best version of each
network. Concretely, PanopticFPN uses ResNet-101,
MaskFormer uses Swin-L and Mask2Former uses Swin-L.

C.3. Segmentation Accuracy Comparison

We conduct a segmentation accuracy comparison with
SemanticNeRF [10] and ObjectSDF [7] in the Sec. 4.3 of
the paper to demonstrate that proposed PCFF can address
the 3D index inconsistency in network-inferred labels while
others cannot. We give the implementation details here.
Due to our method does not explicitly predict the instance
labels for each 3D point, we alternatively use the feature
similarity maps to generate approximate instance masks for
segmentation evaluation. Concretely, we select a centered
object by the query pixel in each ScanNet scene. The fea-
ture similarity map of the target view is generated by calcu-
lating the projected panoptic feature similarity between the
query pixel and each 2D pixel in the target view. Therefore,
the instance mask is generated by a threshold of 0.95, i.e.,
for pixel a, its instance value is set to 1 if the corresponding
feature similarity is bigger than 0.95, and is set to 0 other-
wise. We show the selected objects, feature similarity maps,
approximate instance masks, and the instance masks of Se-
manticNeRF and ObjectSDF in sequence in Fig. 4. We no-
tice that the visualizations are examples and the quantitative
results are calculated on all test views.

D. More Experimental Results

D.1. Correlation Between Attributes

We claim that semantic s is an easier attribute to learn
than appearance c in the Sec. 3.2 of the paper, thus we con-
duct a simple experiment to verify. As shown in Fig. 2, the
prediction of s is relatively correct even if the training is just
started (20k iterations), while the rendering quality is low.

D.2. Using Different Network-Inferred Labels

We conduct the quantitative comparison to show the ren-
dering performance on ScanNet of our methods when using
network-inferred labels predicted by different 2D panoptic
segmentation networks including PanopticFPN [4], Mask-
Former [3], and Mask2Former [2]. PQ is the panoptic
quality metric to measure the accuracy of predicted labels.
We observe that the rendering quality is relative to the PQ,
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Figure 2. We conduct the experiment to demonstrate that s is a
easier attribute to learn c.

ScanNet

PS Methods PQ ↑ PSNR ↑ SSIM ↑ LPIPS ↓
Ground Truth - 26.45 0.807 0.355
Panoptic-FPN [4] 44.1 26.26 0.801 0.367
MaskFormer [3] 53.2 26.32 0.805 0.360
Mask2Former [2] 57.6 26.34 0.806 0.358

Table 1. Comparison of rendering performance with labels pre-
dicted by different panoptic segmentation networks. PQ is the
panoptic quality metric to measure the accuracy of labels.

which verifies that our method can be benefited from the
development of panoptic segmentation networks.

D.3. Parameter Analysis

We study the balance hyper-parameters in the total loss
by setting them to different values and observing the render-
ing performance on Replica ‘office 4’ scene in Fig. 3. We
use the PSNR(↑) and LPIPS(↓) to measure the rendering
performance.

Analysis of the λsem. The hyper-parameter λsem is used
to balance the weight of semantic loss Lsem. Experi-
ments show that the best performance is achieved when
λsem = 1 × 10−3. Continuing to decrease λsem, the ren-
dering performance is degraded because the effectiveness of
semantic-related strategies especially the semantic-guided
regional refinement is weakened simultaneously.

Analysis of the λins. The hyper-parameter λins is used to
balance the weight of instance quadruplet loss Lins, and the
best performance is achieved when λins = 5 × 10−4. Due
to the instance quadruplet loss is additionally employed on
the feature space, the rendering performance is degraded if
a larger λins is used. On the contrary, a smaller λins will
suppress the decomposition effectiveness.
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Figure 3. Parameter analysis for (a) the hyper-parameter λsem of
Lsem and (b) the hyper-parameter λins of Lins.

D.4. Scene Rendering Comparison

We show the qualitative comparison results to show
our rendering capacity in Fig 5. The results show Ob-
jectNeRF [8] is prone to render noisy results if the depth
supervision is removed, and the rendering results of Ob-
jectSDF [7] are too smooth and lose texture details, espe-
cially on high-fidelity scenes such as Replica due to their
method is developed based on SDF. Thanks to our proposed
semantic-related strategies, our method achieves remark-
able rendering results on multiple scene datasets.

D.5. Scene Editing Result on LLFF

We further show the editing result on the ‘room’ scene
in the LLFF dataset. We notice that LLFF does not provide
the ground truth instance annotations. The network-inferred
labels are predicted by Mask2Former [2]. Our method suc-
cessfully edits the target chair without influencing adjacent
chairs, which demonstrates that our method can produce
multi-view consistent scene editing results at instance level
with network-inferred labels.
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Figure 4. We show the selected objects, feature similarity maps, approximate instance masks and the instance masks of SemanticNeRF
and ObjectSDF in sequence for demonstration and comparison. The red dots in input images are query pixels.
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Figure 5. Qualitative comparison of rendering capacity on multiple scene datasets.
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(a) Input Image (b) Network-Inferred Labels (c) Feature Space (d) Colorization

Figure 6. Query-based edits of the target chair on ‘room’ scene in LLFF dataset. The red dot in View #1 is the query pixel.
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