
Supplementary Material for
VINDLU : A Recipe for Effective Video-and-Language Pretraining

Feng Cheng1 Xizi Wang2 Jie Lei1 David Crandall2 Mohit Bansal1 Gedas Bertasius1
1UNC Chapel Hill 2Indiana University

{fengchan,jielei,mbansal,gedas}@cs.unc.edu {xiziwang, djcran}@iu.edu

Our supplementary material consists of:

1. Additional Quantitative Results.

2. Implementation Details.

3. Dataset Descriptions.

4. Additional Temporal Modeling Baselines.

1. Additional Quantitative Results
In this section, we present the results on Action Recogni-

tion task, some useful empirical tips and additional ablation
studies.

1.1. Results on Action Recognition

We finetune our pretrained video encoder on Kinetics-
400 [16] directly using TimeSformer [4] codebase with ex-
actly the same hyperparameters as in [4]. As shown in Ta-
ble 1, our video encoder outperforms TimeSformer [4] and
OmniVL [37] by 2.1% and 1.0% respectively with all mod-
els using exactly the same architecture [4]. This indicates
the usefulness of our VidL pretraining recipe for a pure
video understanding task.

1.2. Other Useful Empirical Tips

Isotropic vs Pyramid-based Vision Encoder. Pyramid-
style ViTs that use downsampling along the spatial dimen-
sion (e.g., Swin [25], MViT [11]) have shown stronger per-
formance than isotropic ViTs (vanilla ViT) on many im-
age/video classification tasks. Thus, several recent VidL
approaches [12, 13, 24] adopt pyramid ViTs as their vision
encoders. However, in our study, we find that isotropic ViTs
tend to have better performance. Specifically, in Tab. 4,
we show that a ViT-based encoder (ViT-B/16) outperforms
VideoSwin (Swin-B) by 1.6%. We hypothesize that this
might happen because isotropic ViTs preserve more fine-
grained spatial information needed for various VidL tasks.

A Linear Scaling Rule. Linear scaling strategy [14] has
been extensively used for large-scale pretraining on im-
age/video classification tasks. However, in our setting, we

Method TimeSformer [4] OmniVL [37] VINDLU

Top-1 acc. 78.0 79.1 80.1

Table 1. Results on Kinetics-400 [16] for action recognition task.
All models use the same TimeSformer architecture [4]. Our VIN-
DLU approach outperforms both the TimeSformer [4] and Om-
niVL [37] baselines by 2.1% and 1.0% respectively. These results
indicate the benefits of our VidL pretraining recipe.

Visual Encoder MSR-VTT DiDeMo ANet Avg.

ViT [3, 10] 64.5 75.0 72.9 70.8
VideoSwin [26] 61.1 73.1 73.4 69.2

Table 2. We study the performance of Isotropic (ViT) vs. Pyra-
mid (VideoSwin) vision encoders. Based on these results, we ob-
serve that ViT outperforms VideoSwin by 1.6% on an averaged
R@{1,5,10} on MSR-VTT, DiDeMo and ActivityNet-Captions.
We experiment with 4 frames using our final model on the 5M
corpus.

observed that the linear scaling rule leads to similar or worse
results (See Table 3). Therefore, for all of our experiments,
we use a fixed learning rate (1e-4) for all batch sizes.

Initialization. We also found that the initialization of var-
ious modules in our model is critical for good VidL per-
formance. In particular, we note that to make MLM and
MVM pretraining objectives effective, we need to use text
and video encoders pretrained with these objectives in a
self-supervised manner (e.g., BERT [9] and BEIT [3] re-
spectively). Otherwise, the performance will drop signifi-
cantly (∼5% averaged R@1,5,10 accuracy drop on MSR-
VTT, DiDeMo, ActivityNet datasets).

1.3. Additional Ablation Studies

MLM masking ratio. We found a larger masking ratio
(50%) for the MLM objective is more helpful for VidL pre-
training, compared to 15% maksing ratio used in BERT [9].
We conjecture that we can use a higher mask ratio than text-



Batch Size 512 1024 1024 2048 2048 2048

LR (×1e-4) 1 1 2 1 2 4

Accuracy 68.2 68.2 68.2 68.5 68.3 67.4

Table 3. We investigate the effectiveness of a scaled learning
rate rule [14] using averaged downstream accuracy on MSR-VTT,
DiDeMo, and ActivityNet-Captions. The learning rate 1e-4 works
best for various batch sizes. We experiment with 1-frame inputs
using our final model on the the 5M corpus.

Masking Ratio 15% 50% 75%

Accuracy 69.2% 70.8% 69.9%

Table 4. We study the masking ratio for the MLM objective. We
experiment with 4 frames using our final model on the 5M corpus.

Mean Pool. + Temp. Attn + MF + Img Data

SSv2-{L,T} 72.3 80.2 81.3 82.7
M-QA N/A N/A 42.7 43.6

Table 5. The analysis for more tasks / datasets. SSv2-L and SSv2-
T refers to SSv2-Label and SSv2-Template datasets [19]. M-QA
refers to MSRVTT-QA [38].

only BERT because our model incorporates complementary
video cues.

Analysis for More Tasks/ Datasets. We further evaluate
our recipe on VidQA on MSRVTT-QA [38] and video re-
trieval on SSv2-Label [19], SSv2-Template [19]. As shown
in Tab. 5, we report the averaged R@{1,5,10} on SSv2-
* and R@1 on VidQA. Since VidQA needs a multimodal
fusion (MF) encoder to generate the answers, we cannot re-
port the results without the MF module (i.e., Columns 1,2 in
Row 2 in Tab. 5). Our results indicate that our conclusions
(i.e., the importance of temporal modeling, multimodal fu-
sion, and joint image+video pre-training) also hold on these
tasks/datasets.

2. Implementation Details

Positional Embeddings. We use learnable absolute tempo-
ral positional embeddings as in [2] and relative spatial po-
sitional embeddings as in [3]. The temporal positional em-
beddings are applied after patchifying the tokens, while the
relative spatial positional embeddings are applied at each
Transformer layer. When adapting the pretrained model to
downstream tasks with more frames, we use zero-padding
for the temporal positional embeddings as in [2]. When
adapting to higher spatial resolutions, we linearly interpo-
late the spatial positional embeddings.

Video Retrieval. We finetune the pretrained model with
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Figure 1. Our architecture for the open-ended question-answering
task. The decoder uses the same architecture as our video-to-text
multimodal fusion (V2T-MF) module and is initialized with the
pretrained V2T-MF’s weights.

VTC and VTM losses. During inference, we follow [22,23]
to first select top-K (K = 128 in our experiments) candi-
dates based on the video-text similarity scores of the uni-
modal encoders and then re-rank these candidates by calcu-
lating their pairwise VTM scores.

Open-ended Question-Answer. Following [19,23,37], we
formulate this task as a text generation task. As shown
in Fig. 1, we add a decoder that takes the multimodal en-
coder’s outputs as the cross attention key and value to gen-
erate the answers. The decoder starts with a [CLS] to-
ken and ends when a [SEP] token is generated. The de-
coder has the same architecture as the multimodal encoder
and is initialized with the pretrained multimodal encoder’s
weights. The model is optimized using the averaged cross-
entropy loss of each token between the generated answer
and the ground truth answer. For a fair comparison with
prior works [19, 36, 37], we constrain the decoder to gener-
ate from the 3128 most common answers [19] during infer-
ence.

Multiple-Choice Question-Answering. For Multiple-
Choice QA, we follow [19,23,37] and convert it to the text-
to-video retrieval task. Specifically, for each question and
m candidate answers, we generate m sentences by concate-
nating the question with each candidate’s answer. We then
rank these sentences by ensembling the retrieval model’s
video-text similarity and pairwise VTM scores. The ensem-
bling weights are set to 0.3 for the similarity score and 0.7
for the VTM score.

Inference with More Frames. Following [19], we per-
form inference using more frames than our finetuned model.
Specifically, we first linearly interpolate the temporal posi-
tional embeddings in the video encoder. Then all the visual
tokens are concatenated and fed to the multimodal encoder.

Pretraining Datasets. As discussed in the main draft,
in Steps 1-3 of our recipe, we pretrain our model on a
2M WebVid-2M [2] corpus. For Steps 4-5, we use a



Config Pretraining
Video Retrieval Video QA

MSRVTT DiDeMo ANet SSv2-* ANet MSRVTT-QA TVQA

optimizer AdamW [28]
optimizer options β1 = 0.9, β2 = 0.999
weight decay 0.02
learning rate schedule cosine decay [27]
init learning rate 1e-4 1e-5 1e-5 1e-5 1e-4 1e-5 1e-5 1e-5
min learning rate 1e-6 1e-6 1e-6 1e-6 1e-5 1e-6 1e-6 1e-6

spatial resolution 224× 224
augementation random resize, crop, horizontal flip

# epochs 10 5 10 10 10 10 10 10
# warmup epochs 1 0.5 0.5 0.5 0 0 0 0
batch size × # GPUs 64× {8, 32} 32× 4 32× 1 32× 1 32× 2 32× 1 32× 1 32× 1

# training frames 4 12 12 12 12 12 12 12
# inference frames 4 12 12 32 12 32 12 12

Table 6. Hyper-parameters for pretraining, and downstream tasks. SSv2-* means SSv2-Template and SSv2-Label datasets. We pretrain on
8 GPUs for C2M and C5M, 32 GPUs for C17M and C25M.

joint image-video corpus consisting of 3M images from
CC3M [34] and 2M videos from WebVid-2M [2]. Lastly, in
Step 6, we scale our pretraining data from 5M → 17M →
25M .

Model Details. Our final VINDLU uses a vision encoder
based on ViT [10] architecture initialized with BEITbase [3]
weights, pretrained on ImageNet-21k. The additional
temporal attention modules are randomly initialized and
added before spatial attention in each Transformer block
as in [4]. As our text encoder, we use the first 9 layers of
BERTbase [9]. The multimodal fusion encoder is our previ-
ously described V2T-MF module built using the last 3 layers
of the same BERTbase model. Our final pretraining objec-
tive is the sum of VTC, VTM, MLM, and MVM losses. The
hyperparameters are shown in Table 6. When doing multi-
stage pretraining in Step 4 in the main draft, we set the ini-
tial learning rate of 5e-5 for stage 2 and 1e-6 for stage 3.
Our model is implemented using PyTorch [33] with Mixed
Precision Training [30] and Gradient Checkpointing [7].

Training Time. We train 2M and 5M corpus on 8× RTX
A5000 GPUs, which takes about 1 day and 1.8 days, re-
spectively. For 17M and 25M, we train our model using
32× A5000 GPUs, which takes 1.3 days and 3 days, respec-
tively. For downstream tasks, the finetuning time ranges
from 2-40 hours depending on the dataset size. The speed
of A5000 is 0.99× as V100 and 0.5× as the A100 according
to Lambda’s benchmark1.

1https : / / lambdalabs . com / gpu - benchmarks fp16,
bert base squad

3. Dataset Descriptions

Pretraining. We pretrain our model on three corpora:
C5M, C17M and C25M, which we describe below.

• C5M (5M): WebVid-2M [2], and CC3M [34]. It con-
tains a total of 5.44M image/video and text pairs.

• C17M (17M): C5M, COCO [8], Visual Genome [18],
SBU Captions [32], and CC12M [6]. It contains a total
of 18.41M image/video and text pairs.

• C25M (25M): C17M, and WebVid-10M [2] (exclud-
ing 2M videos from WebVid-2M as WebVid-10M is a
superset of WebVid-2M). It contains a total of 25.91M
image/video and text pairs.

Text-to-Video Retrieval. We evaluate our model on 3
spatially biased datasets MSR-VTT [39], DiDeMo [1],
ActivityNet- Captions [17] and 2 temporally-heavy datasets
SSv2-Template [19], SSv2-Label [19].

• MSRVTT [39] contains 10K YouTube videos with du-
ration between 10-30 seconds and 200k captions. Fol-
lowing [2,41], we train on 9K videos and report results
on 1K-A test set.

• DiDeMo [1] contains 10K Flicker videos with 41K
captions. Following [19,20, 24], we only keep the first
30 seconds of each video and evaluate paragraph-to-
video retrieval, where all the descriptions for a video
are concatenated to form a single query.

• ActivityNet-Captions [5] contains 20K YouTube
videos with 100K captions. Following [19, 29], we



train on the train set with 10K videos and evaluate on
the val set with 4.9K videos and evaluate paragraph-
to-video retrieval.

• SSv2-Template [19] contains 169K videos for training
and 2K videos for evaluation from dataset SSv2 [15].
The queries are 174 template (e.g., “Holding [some-
thing] next to [something]”) in SSv2. In the 2K test
set, each template has 12 videos.

• SSv2-Label [19] contains the same videos for
train/test as in SSv2-Template except that the text
queries are the annotated labels (e.g., “holding potato
next to vicks vaporub bottle”) in SSv2.

Video Question Answering. We evaluate on two open-
ended QA datasets ActivityNet-QA, MSRVTT-QA and two
multiple-choice QA dataset MSRVTT-MC, TVQA.

• ActivityNet-QA [42] contains 58K open-ended ques-
tions on 5.8K sampled videos from ActivityNet [17].

• MSRVTT-QA [38] contains 244K open-ended ques-
tions on 10K MSRVTT videos.

• MSRVTT-MC [41] contains 3K sampled videos with
one multiple choice question for each video with 5
candidates. We evaluate the performance using the re-
trieval model finetuned on MSRVTT 7K training set.

• TVQA [21] contains 22K video clips and 153K
multiple-choice questions focused on popular TV
shows. We use the official train/val/test splits and re-
ports results on the test set.

4. Additional Temporal Modeling Baselines
As discussed in the main draft, our first step is to ex-

tend our initial image transformer to video via a temporal
modeling mechanism. Such a temporal modeling mecha-
nism would enable training our model on multiple frames
for more robust VidL spatiotemporal representation learn-
ing. For this part of our empirical study, we experiment with
the following temporal modeling schemes using 4-frame in-
puts and pretrained on WebVid-2M [2]. Besides the four
temporal modeling baselines (i.e., mean pooling (MP), late
temporal attention (L-TA), temporal convolution (TC), and
temporal attention (TA)) that we included in the main draft,
we further study Temporal Attention via Prompts (TA-P)
and Window Attention (WA). We describe each of these
baselines in more detail below:

• Temporal Attention via Prompts (TA-P). Follow-
ing, several previous methods [31, 40] we implement

Module M D A Avg. Mem(GB)

Mean Pooling 49.4 53.7 46.4 50.1 9.3
Late Temp. Attn 50.3 54.3 46.0 50.6 10.3
Temp. Conv 53.0 58.2 52.7 54.6 10.3
Temp. Attn 53.7 60.9 55.6 56.7 11.4

Temp. Attn Promp. 49.5 52.7 46.6 49.9 10.3
Wind. Attn (k = 2) 55.4 59.0 56.2 56.9 12.5
Wind. Attn (k = 7) 54.6 59.9 57.7 57.4 18.1

Table 7. We study various temporal modeling schemes. M, D and
A represents MSR-VTT, DiDeMo and ActivityNet-Captions. The
accuracies are averaged R-{1,5,10}. GPU memory is measured
with a batch size of 32 and gradient checkpointing enabled. Tem-
poral Attention is the same as Window Attention with k = 1. We
observe that a larger temporal modeling capacity leads to higher
performance. However, Window Attention with large window size
(i.e., k = 7) only has slight benefits (+0.6%) compared to Tem-
poral Attention but a large increased GPU memory consumption.
Thus, we use temporal attention for our subsequent experiments
due to a favorable computational cost and accuracy balance. These
experiments are conducted with 4-frame inputs, without a multi-
modal fusion encoder, and using the VTC loss as described in Step
1 of the main draft.

a baseline that uses temporal attention via prompt to-
kens. As shown in Figure 2, we first add m prompt to-
kens to each frame. Then, these prompt tokens attend
to each other via temporal attention [4] to exchange
frame-level information. Finally, all frame-level image
tokens and prompt tokens for that frame attend to each
other via spatial attention. Our TA-P scheme follows
the same implementation as in [31].

• Window Attention (WA). Similar to Swin [25], the
spatial-temporal tokens are divided into cuboids of size
T × k × k, where T is the number of frames and k is
the window size. WA is performed inside each cuboid.
Similar to Temporal Attention, the WA is inserted be-
fore the spatial attention as in [4]. We experiment with
k = 2 and k = 7. Larger k leads to an out-of-memory
error.

We also illustrate these attention mechanisms in Figure 2.
Furthermore, for completeness, below, we also describe the
four baselines included in the main draft of the paper.

• Mean Pooling (MP). In this variant, the visual en-
coder processes input frames independently and aver-
ages their frame-wise scores for the video-level score
as in [29].

• Late Temporal Attention (L-TA). In this variant,
we attach 2 Transformer layers to an image encoder,
which then aggregates temporal information across all
input frames.
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Figure 2. Left: Comparison of different attention mechanisms. The query token will first attend to tokens in other frames via temporal
attention machnism and then attend to tokens in the same frames via spatial attention. In Temporal Attention via Prompts, only spatial
attention is applied to image tokens. Right: The temporal modeling blocks are inserted before the spatial attention in each ViT layer.

• Temporal Convolution (TC). We insert a TC block
before the spatial attention in each ViT layer. The TC
block consists of a linear down-projection layer with
hidden size 384, a depth-wise 3× 1× 1 convolution as
in [35], a ReLU activation, and a linear up-projection
layer.

• Temporal Attention (TA). We insert a TA before spa-
tial attention in each layer as in TimeSformer [4].

As shown in Table 7, Temporal Attention outperforms Tem-
poral Convolution and Temporal Attention via Prompts by
2.1% and 6.8% respectively on averaged top-{1,5,10} ac-
curacy. Window Attention with window sizes of k = 2
and k = 7 outperforms Temporal Attention by 0.2% and
0.7% respectively. These results indicate that high temporal
modeling capacity is important in VidL models. As Win-
dow Attention has k× the computational and memory cost
and limited performance improvement compared with Tem-
poral Attention, we choose Temporal Attention as our final
temporal modeling blocks.
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