WildLight: In-the-wild Inverse Rendering with a Flashlight (Appendix)

Ziang Cheng, Junxuan Li, Hongdong Li
Australian National University
\{ziang.cheng, junxuan.li,hongdong.li\}@anu.edu.au

1. Principled BRDF formulation

Our intrinsic network outputs a spacial distribution of texture elements (textels) Θ that parameterize the BRDF at that location. Since we are only interested in recovering opaque objects, we use a submodel of the original paper [1] without the refractive glass lobe. This parameterization can be expressed as:
$\Theta=\{$ base_color, roughness, clearcoat_glossiness
, subsurface, metallic, dieletric, clearcoat $\} \in[0,1]^{9}$
where base $_{c}$ olor $\in[0,1]^{3}$ is a 3D vector that defines the RGB base color of material, and all other terms are scalars in range $[0,1]$. Since the camera and light angle are always aligned in a co-located setup, hereafter we denote them by a single direction h.

The model is a linear combination of diffuse and specular lobes, defined as follows:

$$
\begin{align*}
\rho(\mathbf{n}, \mathbf{h} ; \Theta)= & (1-\text { metallic }) \rho_{\text {diffuse }}(\mathbf{n}, \mathbf{h} ; \Theta)+ \tag{2}\\
& \text { metallic } \rho_{\text {metallic }}(\mathbf{n}, \mathbf{h} ; \Theta)+ \tag{10}
\end{align*}
$$

$0.08 \times(1-$ metallic $)$ dieletric $_{\text {dieletric }}(\mathbf{n}, \mathbf{h} ; \Theta){ }_{\text {fore }}$ $0.25 \times$ clearcoat $\rho_{\text {clearcoat }}(\mathbf{n}, \mathbf{h} ; \Theta)$
and

$$
\begin{equation*}
G=\frac{2}{\sqrt{1+\frac{\text { roughness }^{4}\left(1-\left(\mathbf{n}^{\top} \mathbf{h}\right)^{2}\right)}{\left(\mathbf{n}^{\top} \mathbf{h}\right)^{2}}}+1} \tag{8}
\end{equation*}
$$

The only place where metallic and dielectric lobes differ is the Fresnel term F : the metallic lobe is chromatic while the dielectric lobe is not.

$$
\begin{align*}
& F_{\text {metallic }}=\text { base_color } \tag{9}\\
& F_{\text {dieletric }}=1
\end{align*}
$$

The clearcoat term can also be factorized similar to bewhere D and G are the microsurface distribution function and mask-shadowing term, respectively:

$$
\begin{equation*}
D=\frac{\text { roughness }^{4}}{\pi\left(\left(\text { roughness }^{4}-1\right)\left(\mathbf{n}^{\top} \mathbf{h}\right)^{2}+1\right)^{2}} \tag{1}
\end{equation*}
$$

The metallic and dielectric lobes share the same GGX distribution, and both can be factorized into three terms:

$$
\begin{equation*}
\rho_{\text {specular }}=\frac{D G F}{4\left(\mathbf{n}^{\top} \mathbf{h}\right)^{2}} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\rho_{\text {clearcoat }}=\frac{D_{c} G_{c} F_{c}}{4\left(\mathbf{n}^{\top} \mathbf{h}\right)^{2}} \tag{11}
\end{equation*}
$$

where
The diffuse component have two lobes: one for base diffuse and one for subsurface scattering

$$
\begin{equation*}
D_{c}=\frac{\text { roughness }_{c}^{2}-1}{2 \pi \log \left(\text { roughness }_{c}\right)\left(1+\left(\text { roughness }_{c}^{2}-1\right)\left(\mathbf{n}^{\top} \mathbf{h}\right)^{2}\right)} \tag{3}
\end{equation*}
$$

$\rho_{\text {diffuse }}=(1-$ subsurface $) \rho_{\text {base_diffuse }}+$ subsurface $\rho_{\text {subsurface }}$
where the two diffuse lobes are defined as
where the two diffuse lobes are defined as
$\rho_{\text {base_diffuse }}=\frac{\text { base_color }}{\pi}\left(1+(2 \text { roughness }-0.5)\left(1-\mathbf{n}^{\top} \mathbf{h}\right)^{5}\right)^{2}=\frac{2}{\sqrt{1+\frac{0.25^{2}\left(1-\left(\mathbf{n}^{\top} \mathbf{h}\right)^{2}\right)}{\left(\mathbf{n}^{\top} \mathbf{h}\right)^{2}}}+1}$
$F_{c}=0.2$
(4) $\quad F_{c}=0.2$

Here the clearcoat roughness roughness c_{c} is confined
and $\rho_{\text {subsurface }}$ is defined as $\frac{1.25 \text { base_color }}{2 \pi}\left(\left(1+(\text { roughness }-1)\left(1-\mathbf{n}^{\top} \mathbf{h}\right)^{5}\right)^{2}\left(\frac{1}{\mathbf{n}^{\top} \mathbf{h}}-1\right)+\frac{1}{\text { (5) }}\right.$ clithin earcoat_glossiness $[0.001,0.1]$ and is linearly parameterized by respectively.

2. Surface-to-surface distance for geometry evaluation

We used a commutative mesh-to-mesh distance for evaluating the surface geometry produced from different method in Table 1. This distance metric is defined as follows:

$$
\begin{equation*}
D\left(S_{1}, S_{2}\right)=\frac{1}{2} \mathbb{E}\left(d\left(\mathbf{x}_{1}, S_{2}\right)+d\left(\mathbf{x}_{2}, S_{1}\right)\right) \tag{16}
\end{equation*}
$$

where d is the point-to-manifold Euclidean distance, S_{1} and S_{2} are the visible surface regions, and \mathbf{x}_{1} and \mathbf{x}_{2} are two mutually independent random points uniformly sampled from S_{1} and S_{2} respectively. We compute the mean distance by repeatedly sampling $\mathbf{x}_{1}, \mathbf{x}_{2}$ until the standard variation of sampling mean is no greater than 10^{-5}, or until an excessive number of one million pairs of points have been sampled. For the median distance, we replace the expectation operator \mathbb{E} with the sample median.

References

[1] Brent Burley. Physically-based shading at disney. In ACM SIGGRAPH Course Notes. Practical physically-based shading in film and game production., volume 2012, pages $1-7$, 2012. 1

