
Supplementary: Reproducible scaling
laws for contrastive language-image

learning

A. Further details on distributed training

A.1. Supercomputer specifications

The JUWELS Booster [34] supercomputer used for
training consist of 936 compute nodes that host four
NVIDIA A100 GPUs each, providing 3744 GPUs in to-
tal. The installed A100 Tensor Core GPUs (40GB) provide
19.5TFLOP/s of FP64TC computing performance each.
The GPUs are hosted by AMD EPYC 7402 CPUs with
2×24 cores (SMT-2) per node, clocked with 2.8GHz. Each
node is diskless and is equipped with 512GB of RAM. The
network is based on Mellanox HDR200 InfiniBand, with
four Mellanox ConnectX 6 devices per node, each providing
200Gbit/s bandwidth per direction.

The NVIDIA A100 GPUs reach peak efficiency of
48.75GFLOP/(sW) when utilizing the FP64 Tensor Cores.
This made the employed machine rank highest in the
Green500 list as of November 2020 as the most energy ef-
ficient supercomputer among the first 100 machines of the
Top500 list with 25GFLOP/(sW).

A.2. Scaling and training time

Here, we report scaling behavior during large-scale pre-
training using ViT-L/14 as a vision backbone with Open-
CLIP [32]. We performed scaling experiments to assess
the scalability of data parallel training distributed across
many GPUs on multiple nodes using PyTorch DDP. The
efficiency in Figure 6b is computed using the following for-
mula: E(N) = 100× T (N)

N×T (1) . T (N) is the total measured
throughput in Im/s for N GPUs. The best achievable effi-
ciency, when scaling is perfect, is 100%.We observe that
scaling is sufficiently close to ideal linear, staying above
≈ 84% for 1024 GPUs (256 nodes). We also provide the
raw throughput (Im/s) numbers in Figure 6a.

A.3. Sharding contrastive loss

The InfoNCE loss [52] used by CLIP can be thought of as
a method to maximize the mutual information between text
and image representations. Formally, Oord et al. express
that I(X;Y ) ≥ log(N) − LN , N denoting batch size and
LN representing the InfoNCE loss. As a result of this lower
bound, maximizing the batch size will maximize our mutual
information.

Radford et al. [55] take advantage of this bound and use
N = 32, 768 to train CLIP. Such a batch size necessitates
the sharding of computation. Although the original CLIP
paper points towards this notion, the implementation details
are nontrivial.

Before sharding, the similarity scores will take up O(N2)
memory on each worker, totalling to 4 GB of VRAM in FP32.
After sharding memory reduces to instantiating two n×N
matrices, n being the batch size allocated to each worker.
Using a local batch size of 256, the similarity matrices now
occupy 64 MB of memory in FP32.

To achieve this memory reduction, we can eliminate
redundant computations and compute the similarities
of local features versus all features. When aggregated
across all machines, this achieves identical gradients.
However, it should be noted that the all-gather method
is imperative for correct gradient calculation. Py-
Torch’s standard torch.distributed.all gather
can not be differentiated through, while
torch.distributed.nn.functional.all gather
can be. Thus, we require the use of the latter to correctly
calculate the gradients in a distributed manner.

A.4. Training instabilities

As parameterization increased within our training runs,
so did model model instability. Half-way through the runs of
ViT L/14 H/14 and g/14, NaN values and loss spikes began
occurring.

To address these issues, we attempted to use extra normal-
ization layers, add scaled cosine attention, resume many
steps before crashes, and implement other architecture
tweaks with no success. What ended up solving the sta-
bility issues was increasing precision.

Using Automatic Mixed Precision (AMP) with bfloat16
over float16, or float32 with tensor-float32 resolved the is-
sues mentioned above. We also have observed that even
the smaller ViT-B models with AMP can become unstable
when learning rate and batch size become sufficiently large,
suggesting a generic scheme behind the phenomenon where
frequency of instabilities occurring during the training is a
function of model scale and global batch size.

B. Experimental details
B.1. Datasets employed in experiments.

LAION-400M and LAION-5B. Both LAION-400M
[66] and LAION-5B [65] are open, public image-text
datasets that were composed by obtaining links from Com-
mon Crawl [1]. While LAION-400M contains 414M en-
glish image-text pairs, LAION-5B is currently the largest
public image-text dataset containing over 5.8 billion multi-
lingual image-text examples. In both cases, samples are
obtained by filtering a subset of Common Crawl with a pre-
trained OpenAI ViT B/32 model. LAION-5B contains an
English image-text subset of 2.32 billion samples, to which
we refer as LAION-2B in this work. Besides the open na-
ture of the datasets, a further advantage is full transparency
about the dataset composition and assembly, with software
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Figure 6. Distributed training for OpenCLIP ViT-L/14, scaling behavior on the supercomputer using A100 GPUs while varying the number
of GPUs. In Figure 6a, we show the raw throughputs and in Figure 6b we show speedup and efficiency we obtain in the same setup, relative
to training with a single node (each node contains 4 GPUs).

Dataset # English Img-Txt Pairs
Public Datasets

LAION-400M 407M
LAION-2B 2.3B

Private Datasets
CLIP WIT (OpenAI) 400M

ALIGN 1.8B
BASIC 6.6B

Table 2. Open LAION datasets used for pre-training in this
study. Adapted from [65]. LAION-2B is a subset of multi-lingual
LAION-5B and is more than 20 times larger than other public En-
glish image-text datasets. The scale of LAION-2B is comparable to
the largest private dataset used for language-vision model training.

stack and tools around LAION-400M and LAION-5B re-
leased as open-source, increasing reproducibility of experi-
ments. This already resulted in numerous works using the
datasets for training state-of-the-art language-vision mod-
els [19, 27, 49, 63, 76], validating the usage of those datasets
for studying scaling laws in this work.

Downstream transfer and fine-tuning datasets. For
downstream classification tasks, in addition to standard Im-
ageNet, we follow [65] and use VTAB+, a collection of
datasets in VTAB together with ImageNet derived robustness
datasets and additional datasets, forming a comprehensive
set of 35 tasks. For evaluating retrieval, we make use of
MS-COCO and Flickr30K. For fine-tuning, we make use
of a dedicated ImageNet-12k dataset (12M training exam-

ples, 470K validation examples) which is a subset of the
full ImageNet-22k (14M examples) that we employ for the
multi-stage fine tuning procedure described in Sec. 4.4. For
more details on downstream datasets, refer to Table 26.

Duplication check for pre-training and downstream
datasets.. To ensure that images from downstream datasets
are not contained in LAION, we conduct a simple dupli-
cation check based on the perceptual image hash library
pHash [82]. We apply pHash’s discrete cosine transform
(DCT) method on LAION-400M images and images from
downstream datasets. Afterwards, for each downstream
dataset, we count the number of duplicates by finding the
hashes that are also present in LAION-400M. We provide the
overlap percentage found on a subset of downstream datasets
in Table 3. In Figure 7, we also provide a sample of images
from downstream datasets detected as duplicates in LAION-
400M. Overall, the ratio of detected duplicates is around
1%, except on ImageNet-R (3.80%) and ImageNet-Sketch
(5.15%). We investigate further and re-evaluate zero-shot
performance of our pre-trained Vit-H/14 on ImageNet-R and
ImageNet-Sketch by removing duplicates from their test sets.
For ImageNet-R, zero-shot top-1 accuracy goes from 89.32%
to 89.21% after removing duplicates. For ImageNet-Sketch,
zero-shot top-1 accuracy goes from 66.57% to 66.59% af-
ter removing duplicates. We conclude, based on those re-
sults, that it is unlikely that downstream results would be
affected by the duplicates. This would be in line with previ-
ous works [55, 86] which explicitly measured and compared



Dataset Overlap%

ImageNet 1.02
ImageNet-v2 1.35
ImageNet-R 3.80
ImageNet Sketch 5.15
ImageNet-A 0.40
ObjectNet 0.10
CIFAR-100 0.02
CIFAR-10 0.03
MS-COCO 1.12
Flickr30K 1.30

Table 3. Ratio of images (%) on downstream datasets that were
detected on LAION-400M, using pHash [82].

Model ImageNet top-1 (%) MS-COCO Recall@5 (%)

H/14 (68B) 79.73 75.03
g/14 (34B) 79.11 74.48
g/14 (68B) 80.66 75.85
G/14 (13B) 78.26 73.75
G/14 (34B) 80.47 75.68
G/14 (68B) 81.92 76.99

Table 4. Performance extrapolation of g/14, H/14 and G/14 on
larger scales corresponding to Fig.8. We fit a power-law on the
Pareto frontier of available models. We show the zero-shot top-1
accuracy predictions for ImageNet and zero-shot retrieval image
retrieval Recall@5 predictions for MS-COCO.

performance on deduplicated downstream datasets, reporting
that duplication in test sets do not significantly alter most
results. This is likely due to the very large scale and diversity
of pre-training data. We leave more elaborated duplication
detection procedures for future work.

B.2. Further experimental results

B.2.1 Predictions derived from scaling laws

We can use scaling laws derived from our measurements
to predict model performance for larger scales on differ-
ent downstream tasks. To perform predictions, we fit a
power-law on the Pareto frontier3. Fig.8a and Fig.8b show
extrapolation of performance for ImageNet and MS-COCO,
respectively. According to the predictions, H/14 (68B sam-
ples seen) would achieve 79.73% (+1.76%) zero-shot top-1
accuracy on ImageNet and 75.10% (+1.60%) image retrieval
Recall@5 on MS-COCO, compared to our trained H/14 (34B
samples seen). See also Tab.4 for more detailed extrapolation
numbers. For g/14 (68B samples seen), we predict 80.66%
(+4%) zero-shot top-1 accuracy on ImageNet and 75.85%

3Since total compute budget (measured in GMAC) of different trained
models are not exactly aligned, we adopt a binning approach. We bin the
GMAC compute budget axis and compute the optimal performance within
each bin, then fit a line in log-log space on the resulting bins.

(+3.45%) image retrieval Recall@5 on MS-COCO, com-
pared to our trained g/14 (13B samples seen). On the largest
compute budget we consider, G/14 (68B samples seen), we
predict 81.92% zero-shot top-1 accuracy on ImageNet and
76.99% image retrieval Recall@5 on MS-COCO.

B.2.2 Fine-tuning

In Table 9, we show detailed results of fine-tuning on Ima-
geNet with and without extra data (Imagenet-12k), and show
results of the fine-tuned models on five ImageNet robustness
test sets. Also, complementing the results shown in Figure
5 in Section 4.4, we show a per-task breakdown of the the
zero-shot and fine-tuned performance on the eight classifica-
tion tasks in Figures 9 and 10. Exact numbers are shown in
Tables 6, 7, and 8.

Moreover, since fine-tuning on some downstream tasks
can decrease accuracy on others, we experiment with model
patching by interpolating between the weights of fine-tuned
and zero-shot models, as in Ilharco et al. [31].4 We choose
the mixing coefficient α ∈ 0, 0.1, ..., 1.0 that maximizes
average accuracy on the eight downstream tasks, while ac-
curacy on ImageNet—used as a control—decreases by one
percentage point or less. In Figure 11, we show how scale af-
fects performance on the eight tasks we fine-tune one, along
with that on ImageNet.

Finally, Tables 10 and 11 include hparam templates for
reproducing ImageNet fine-tune results. Once published, the
individual model weights will include their specific train-
ing hyper-parameters as there is some variation in specific
instances (i.e. at different upscale sizes, from 12k to 1k).
Motivated by BEiT [4], all ImageNet fine-tune runs make
use of layer-wise learning-rate decay (also known as dis-
criminative fine-tuning [29]); this is an important parameter
that needs tuning per model size along with the learning-rate
itself.

B.2.3 Control experiments

Batch size during pre-training. To be able to train effi-
ciently on a large number of GPUs (up to 1520 in this work),
it is desired to maximize the local batch size for each GPU
worker for performing data parallel distributed training. For
this large amount of GPUs, it leads to training with global
batch sizes of 86K-88K. As we would like to also re-use
experiments that were already performed with smaller batch
sizes of 32K-45K, we execute control experiments to reas-
sure that varying batch size in those ranges does not alter
observed model performance on downstream tasks strongly.
The experiments summarized in Table 12 provide evidence
that performance variation due to changes in batch size is

4The weights θpatched of the patched model are obtained via the equation
θpatched = (1− α)θzero-shot + αθfine-tuned, where α ∈ [0, 1] is the mixing
coefficient.



Figure 7. Duplicate images detected using pHash [82] between downstream datasets and LAION-400M. Top row shows images from
downstream datasets, while bottom row show corresponding detected duplicates in LAION-400M. We observe near-duplicate detection for a
variety of image transformations: blurring, text blitting, color transformations, cropping, and scaling. Last two columns show false positive
examples detected on ImageNet-Sketch dataset. In general, we observed that most of false positive cases had a uniform background, which
pHash seems to be sensitive to.
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Figure 8. Zero-shot performance extrapolation of g/14, H/14 and G/14 on larger scales. We fit a power-law on the Pareto frontier of available
models. In Fig.8a we show the predictions for ImageNet classification, while in Fig.8b we show the predictions for MS-COCO image
retrieval.

small, in the range of 0.2 − 0.5% across different settings,
which is small enough not to distort the trends observed in
the effect of scale, where the changes are substantially larger.

LAION-400M and 400M subset of LAION-2B size.
For 400M data scale, we are using LAION-400M dataset, as
it was already validated by numerous previous works. This
is not a subset of LAION-2B, as both were obtained by the
same, but separately executed composition procedure using
Common Crawl. To test that LAION-400M and LAION-

2B can be considered as two different scale of the same
data distribution, we extracted a random 400M subset from
LAION-2B and conducted a pre-training experiment using
our reference OpenCLIP ViT-B/32 model, 13B samples seen
scale. We evaluated the pre-trained model on ImageNet
zero-shot classification task, comparing it to same model pre-
trained on LAION-400M. The outcome shows no significant
difference between the performance of both models. This
provides evidence that LAION-400M is comparable to a
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Figure 9. Scaling trends of zero-shot models on the eight other downstream tasks used for the fine-tuning experiments in Section 4.4 and on
ImageNet.

ImageNet CIFAR100
Model Samples Seen Dataset VTAB 10 shot 25 shot Full 10 shot 25 shot Full

ViT-B/32 13B CLIP-WIT 69.71 59.16 65.27 75.61 63.93 70.64 79.97
ViT-B/32 13B LAION-400M 71.84 59.36 65.17 74.90 70.50 75.18 82.92
ViT-B/32 34B LAION-2B 71.53 62.40 67.98 76.93 75.47 79.97 85.99
ViT-B/16 13B CLIP-WIT 71.25 65.42 70.97 79.82 68.91 74.67 82.40
ViT-B/16 13B LAION-400M 72.72 64.46 69.94 78.74 71.96 77.21 84.07
ViT-L/14 13B CLIP-WIT 73.77 73.51 77.67 84.39 77.57 81.91 87.14
ViT-L/14 13B LAION-400M 73.98 70.86 75.02 81.77 78.06 82.48 87.95
ViT-L/14 34B LAION-2B 74.48 73.94 77.45 83.46 82.76 86.04 90.14
ViT-H/14 34B LAION-2B 75.96 75.79 79.07 84.85 84.74 87.82 91.43
ViT-g/14 13B LAION-2B 75.18 74.87 78.25 84.09 84.66 87.76 91.09

Table 5. Scaling model and data size leads to lower error linear classifers on ImageNet [15], CIFAR100 [43], and the visual task adaptation
benchmark (VTAB) [85]. We train linear probes for models with at least 13B samples seen. We train probes by first caching the image
features, thus no data augmentation is used. k shot denotes that k images per-class are used to train the linear probe.

400M subset extracted from LAION-2B, and can be thus considered to be a smaller scale of same data distribution.
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Figure 10. Scaling trends of fine-tuned models on the eight other downstream tasks used for the fine-tuning experiments in Section 4.4.

Top-1 Accuracy (%)
Arch. # samples Dataset ImageNet Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

ViT-B/32 13B CLIP-WIT 63.35 59.73 43.99 45.81 32.56 48.25 60.65 63.18 31.61
ViT-B/32 13B LAION-400M 62.94 79.24 54.47 50.89 41.98 37.44 57.62 66.28 30.36
ViT-B/32 34B LAION-2B 65.63 84.45 54.04 47.22 36.48 63.34 67.70 67.94 41.66
ViT-B/16 13B CLIP-WIT 68.33 64.61 45.11 53.96 43.34 51.80 65.76 65.50 51.98
ViT-B/16 13B LAION-400M 67.05 83.63 51.01 49.15 43.45 66.29 64.97 67.96 34.12
ViT-L/14 13B CLIP-WIT 75.54 77.75 55.32 60.22 50.55 76.36 71.05 68.28 58.45
ViT-L/14 13B LAION-400M 72.75 89.53 60.16 61.48 49.89 76.09 68.92 71.44 49.54
ViT-L/14 34B LAION-2B 75.26 92.71 62.82 64.44 56.14 54.10 73.25 73.56 40.84
ViT-H/14 34B LAION-2B 77.95 93.50 67.50 71.04 58.35 72.83 75.87 75.23 52.51
ViT-g/14 13B LAION-2B 76.66 92.90 68.24 62.70 49.87 68.46 74.57 75.24 39.34

Table 6. Zero-shot accuracy for various models on downstream tasks from Section B.2.2.

Pre-training trial-to-trial variance. To have a sanity
check of trial-to-trial variance for model pre-training, we
trained our reference ViT-B/32 model, 13B samples seen
scale, for two trials using exactly the same hyper-parameters
(lr=0.001, batch size 86K, warm up 2K). We evaluated the

two trials on ImageNet zero-shot classification task. The
result suggests a small variance of around 0.1%, which is
much smaller than variations observed when changing the
scales. This allows us to conclude that scaling trends we
observe are not distorted by variance caused by trial-to-trial
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Figure 11. Scaling trends of patched models [31], on ImageNet and eight other downstream tasks used for the fine-tuning experiments in
Section 4.4.

Top-1 Accuracy (%)
Arch. # samples Dataset Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

ViT-B/32 13B CLIP-WIT 72.19 79.04 98.37 98.19 99.36 93.62 73.57 95.33
ViT-B/32 13B LAION-400M 84.14 78.99 97.96 98.37 99.55 93.54 72.76 95.67
ViT-B/32 34B LAION-2B 88.16 81.01 97.96 98.00 99.34 94.46 75.04 95.46
ViT-B/16 13B CLIP-WIT 83.10 82.45 98.26 98.84 99.44 94.90 76.94 96.33
ViT-B/16 13B LAION-400M 89.22 82.34 98.22 98.82 99.54 94.67 75.81 96.18
ViT-L/14 13B CLIP-WIT 90.87 84.63 98.78 99.18 99.59 96.33 81.22 97.42
ViT-L/14 13B LAION-400M 92.35 84.31 98.56 99.01 99.62 96.05 79.08 96.97
ViT-L/14 34B LAION-2B 94.42 85.69 98.85 98.92 99.67 96.06 81.10 97.06
ViT-H/14 34B LAION-2B 94.80 85.32 98.85 99.03 99.55 96.52 82.08 97.40
ViT-g/14 13B LAION-2B 94.84 85.48 98.44 98.95 99.54 95.95 80.82 96.67

Table 7. Accuracy after fine-tuning for various models on downstream tasks from Section B.2.2. We fine-tune jointly on the eight
downstream image classification tasks, alternating batches from each task. We fine-tune only the parameters of the vision encoder, using a
fixed classification head for each task initialized with the weights from the zero-shot model.

pre-training. Resampling vs full shuffled training. During our larger



Top-1 Accuracy (%)
Architecture # samples Dataset ImageNet Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN

ViT-B/32 13B CLIP-WIT 62.36 72.96 73.40 97.81 95.53 98.83 91.67 72.08 93.50
ViT-B/32 13B LAION-400M 62.27 85.24 71.70 96.11 93.97 98.18 88.44 71.03 91.29
ViT-B/32 34B LAION-2B 64.84 88.93 78.19 97.56 95.60 98.90 92.21 74.22 94.53
ViT-B/16 13B CLIP-WIT 67.70 81.07 77.61 98.00 97.40 99.15 93.27 75.59 95.53
ViT-B/16 13B LAION-400M 66.18 89.73 77.50 97.81 97.22 99.07 92.03 74.13 94.69
ViT-L/14 13B CLIP-WIT 75.04 90.98 83.62 98.74 98.99 99.64 96.14 80.81 97.34
ViT-L/14 13B LAION-400M 71.76 92.85 83.67 98.63 98.88 99.56 96.02 78.93 96.95
ViT-L/14 34B LAION-2B 74.50 94.79 85.16 98.78 98.65 99.60 95.97 80.72 96.98
ViT-H/14 34B LAION-2B 77.12 95.15 85.32 98.78 98.84 99.57 96.51 81.98 97.45
ViT-g/14 13B LAION-2B 76.16 95.27 85.11 98.56 98.80 99.53 95.83 80.86 96.66

Table 8. Accuracy after joint patching [31] for various models on downstream tasks from Section B.2.2. Patching by jointly fine-tuning on
the eight tasks with the exception of ImageNet (used only as control), then interpolating the weights of the fine-tuned model with the weights
of the zero-shot model. The mixing coefficient for the interpolation is chosen so it maximizes average accuracy on the eight downstream
tasks while maintaining ImageNet accuracy within 1 percentage point of the corresponding zero-shot model.

Top-1 Accuracy (%)
Model Im Size Dataset Extra FT Params (M) GMAC Acts (M) IN IN-ReaL IN-V2 IN-A IN-R IN-Sketch

ViT-B/32 224 CLIP-WIT None 88.2 4.4 5.0 81.93 87.17 70.70 22.57 55.90 45.04
ViT-B/32 224 LAION-2B None 88.2 4.4 5.0 82.58 87.54 71.21 22.85 59.16 49.07
ViT-B/32 224 LAION-2B IN-12k 88.2 4.4 5.0 83.30 87.81 72.50 30.57 57.06 45.74
ViT-B/32 384 CLIP-WIT IN-12k 88.3 13.1 16.5 85.11 89.04 74.53 44.75 58.21 45.75
ViT-B/16 224 CLIP-WIT None 86.6 17.6 23.9 85.28 89.16 75.57 47.23 66.02 50.94
ViT-B/32 384 LAION-2B IN-12k 88.3 13.1 16.5 85.38 89.20 75.08 47.95 60.37 47.95
ViT-B/16 224 LAION-2B None 86.6 17.6 23.9 85.47 89.43 75.13 41.57 68.75 55.40
ViT-B/16 384 CLIP-WIT None 86.9 55.5 101.6 86.24 89.71 76.68 57.55 67.22 52.15
ViT-B/16 384 LAION-2B None 86.9 55.5 101.6 86.53 90.04 77.55 56.96 69.94 55.85
ViT-B/16 384 LAION-2B IN-12k 86.9 55.5 101.6 87.17 90.11 78.16 62.61 65.53 52.62
ViT-L/14 224 LAION-2B None 304.2 81.1 88.8 87.30 90.10 78.42 59.89 81.70 64.81
ViT-H/14 224 LAION-2B None 632.0 167.4 139.4 87.59 90.17 79.36 65.56 83.28 67.41
ViT-L/14 336 LAION-2B None 304.5 191.1 270.2 87.78 90.30 79.07 69.03 82.60 64.79
ViT-L/14 224 CLIP-WIT None 304.2 81.1 88.8 87.85 90.31 79.59 71.79 82.32 62.63
ViT-L/14 224 LAION-2B IN-12k 304.2 81.1 88.8 87.89 90.30 78.51 67.01 78.26 62.06
ViT-L/14 336 LAION-2B IN-12k 304.5 191.1 270.2 88.17 90.43 78.84 73.64 77.68 60.97
ViT-L/14 224 CLIP-WIT IN-12k 304.2 81.1 88.8 88.17 90.37 79.38 72.33 78.68 61.40
ViT-H/14 224 LAION-2B IN-12k 632.0 167.4 139.4 88.25 90.41 79.22 70.72 82.82 65.32
ViT-H/14 336 LAION-2B IN-12k 632.5 391.0 407.5 88.50 90.49 79.55 75.68 82.26 64.62

Table 9. Fine-tune results for ImageNet-1k and associated robustness test sets (ImageNet-ReaL [7], ImageNet-V2 [60], ImageNet-A [24],
Imagenet-R [22], and ImageNet-Sketch [75]). Rows with the ’Extra FT’ set to IN-12k were fine-tuned on a 12k class subset of ImageNet-22k
before fine-tuning on ImageNet.

scale pre-training experiments featuring LAION-2B, it be-
came important to allow for frequent checkpoint saving.
Saving within a running epoch would require to memorize
which samples were already seen, to be able to resume train-
ing in such a way that only previously not seen samples
would be taken. To simplify the procedure, we have tested
a version that does not perform epoch-wise training, tak-
ing a pre-defined number of samples instead for a virtual
”step” through data. Such a resampling procedure can have
repeated samples in the subset of data that contains in total
the number of samples equal to number of samples in one
full epoch through the dataset. As such training procedure
differs from standard epoch-wise training, we conducted
test experiments to check whether this results in differences

in performance of pre-trained models when comparing to
standard epoch-wise shuffling training. We trained our refer-
ence ViT-B/32 model and ViT-B/16 model on LAION-400M
either using standard epoch-wise training with shuffling or
the training that involves described resampling procedure.
We observed only negligible differences of 0.1%-0.3%, con-
cluding that using simple resampling cannot distort scaling
trends observed in the study.

B.2.4 Further detailed results and analysis

Consistency of scaling trends for CLIP and openCLIP
In Fig. 12, we complement the results we found in Fig. 1

and show scaling trends with additional ResNet models from
OpenAI trained on the WebImageText (WIT) dataset. De-



Hyperparameter B/32 B/16 L/14 H/14

Peak Learning-rate 1.00E-03 3.00E-04 6.00E-05 5.00E-05
Batch Size 4096 2048 2048 2048
Epochs 50 50 50 50
Warmup Epochs 10 10 10 10
Layer-wise LR Decay 0.65 0.7 0.8 0.82
EMA Weight Smoothing 0.9998 0.9998 0.9997 0.9998
Weight Decay 0.05 0.05 0.01 0.02
Label Smoothing 0.1 0.1 0.1 0.1
Stoch. Depth 0.1 0.1 0.2 0.2
Dropout 0 0 0 0
Gradient Clipping 3 3 3 2
Rand Augment (Uniform) M=U(0, 8), N=2 M=U(0, 9), N=2 M=U(0, 9), N=3 M=U(0, 8), N=4
Random Erase Prob 0.3 0.3 0.3 0.3
Random Resize Crop Yes Yes Yes Yes
Mixup Alpha 0 0 0 0
Cutmix Alpha 0 0 0 0
Color Jitter 0 0 0 0

Table 10. ImageNet fine-tune hyper-parameters.

Hyperparameter B/32 B/16 L/14 H/14

Peak Learning-rate 1.00E-03 5.00E-04 5.00E-04 4.00E-04
Batch Size 4096 4096 4096 4096
Epochs 60 60 60 60
Warmup Epochs 10 10 10 10
Layer-wise LR Decay 0.65 0.7 0.8 0.86
EMA Weight Smoothing 0.9998 0.9998 0.9999 0.9999
Weight Decay 0.05 0.05 0.02 0.02
Label Smoothing 0.1 0.1 0.1 0.1
Stoch. Depth 0.1 0.1 0.2 0.2
Dropout 0 0 0 0
Gradient Clipping 3 3 3 2
Rand Augment (Uniform) M=U(0, 8), N=2 M=U(0, 8), N=2 M=U(0, 9), N=2 M=U(0, 8), N=3
Random Erase Prob 0.3 0.3 0.3 0.3
Random Resize Crop Yes Yes Yes Yes
Mixup Alpha 0 0 0 0
Cutmix Alpha 0 0 0 0
Color Jitter 0 0 0 0

Table 11. ImageNet-12k intermediate fine-tune hyper-parameters.

Batch size / 32k/38k (L/14) 64k (B/16) /
Model 86k (+lr tune)

ViT B/32 62.9 63.37
ViT B/16 67.34 67.86
ViT L/14 72.8 72.98

Table 12. Batch size control experiments, zero-shot ImageNet top-1
accuracy. Executed on LAION-400M, 13B samples seen (32 full
epochs).

spite different model architectures, we see the same consis-
tent pattern - both OpenAI’s ResNets and ViT trained on
WIT demonstrate stronger scaling on zero-shot classifica-
tion but worse scaling on retrieval than openCLIP trained on
LAION datasets. This evidence further backs up our findings
on dataset-dependent scaling law differences across tasks
we observe for LAION-openCLIP and WIT-openAI CLIP

Model/Dataset 400M LAION-2B subset LAION-400M

ViT B/32 63.56 63.37

Table 13. 400M data scale subset control experiments, zero-shot
ImageNet top-1 accuracy. Executed either on 400M subset of
LAION-2B or on LAION-400M, 13B samples seen (32 full epochs).

Trial ImageNet zero-shot top-1

1 63.28
2 63.67

Table 14. Trial-to-trial variance control experiment. Executed on
LAION-400M, 13B samples seen (32 full epochs) using ViT B/32
model.



Model Resampling Full shuffling

ViT B/32 63.37 63.28; 63.67

Table 15. Resampling vs. full shuffling control experiments, zero-
shot ImageNet top-1 accuracy. Executed on LAION-400M, 13B
samples seen (32 full epochs).

Model Samples seen LAION-80M LAION-400M LAION-2B

ViT-B/32 3B 38.05 41.53 43.66
13B 42.30 46.18 45.50
34B 42.10 46.41 50.69

ViT-B/16 3B 43.48 45.14 46.93
13B 44.42 48.39 48.72
34B 44.45 48.31 52.60

ViT-L/14 3B 45.69 50.50 51.64
13B 46.36 51.51 53.01
34B 45.70 52.83 54.63

ViT-H/14 34B - - 56.43

ViT-g/14 13B - - 56.54

Table 16. Detailed results on VTAB+ [65] zero-shot classification,
where we average over 35 tasks.

models (see also Discussion in Sec. 5).
Details of zero-shot classification results. Complement-

ing results from the Section 4, we provide summary ta-
bles for the performance measure on different downstream
tasks: ImageNet (Tab. 19), ImageNet robustness(Tab. 20),
MS-COCO image retrieval (Tab. 21) and text retrieval
(Tab. 22), Flickr30K image retrieval (Tab. 23) and text re-
trieval (Tab. 24), and VTAB+ (Tab. 16 and 17).

Details of linear probing results. To supplement Fig-
ures 2 and 3, we provide the corresponding Table 5 with
detailed results.

Architecture and training hyperparameters. We pro-
vide overview for architecture (Tab. 25) and pre-training
hyper-parameters (Tab. 18) that we have used in the experi-
ments.

C. Code and Data availability
We provide source code used for running experiments

and producing figures in this study at https://github.
com/LAION-AI/scaling-laws-openclip. Links
to pre-trained models obtained in this study and links to
instructions for obtaining LAION-400m and LAION-5B
used for pre-training experiments will be also made available
there. All datasets used in the study are openly available and
are listed together with references to the original work in
Table 26.

Broader and Social Impact
Safety aspect. Our work deals with studying function

and properties of pre-trained models on large scales. Re-

leasing these models to public can have both positive and
negative implications, like with any research artefact that
possesses generic functionality. We would like to stress
that we consider the released pre-trained language-vision
models as research artefacts that are there to advance the
studies of scaling laws and allow analysis of the properties
and behavior of such models for the broader research com-
munity. These models are not meant to be incorporated into
end products or even used for applications in sensitive areas
like interpretation of medical imaging in hospitals or secu-
rity surveillance. There is potential for abuse of technology
based on large-scale pre-trained generalist models, and it
is the task of democratic institutions to work out rules for
sensitive applications that might involve those. Open release
of models gives the broad research community also opportu-
nity to study safety related aspects of such models, such to
preventively design measures that make such abuse by mali-
cious parties less probable, in a common transparent effort.
Same applies to the common effort of studying yet not sys-
tematically understood biases that such models may contain
due to pre-training on either largely uncurated, imbalanced
data or on data filtered by models that already contain un-
known biases (like OpenAI’s CLIP that was trained on the
private WIT-400M dataset), and due to the simplistic nature
of the contrastive InfoNCE loss that drives learning.

Energy cost. There is high computational cost bound
to pre-training experiments on large scale. Supercomputers
used in our studies are highly ranked in the Green Top-500
list, ensuring that energy costs are dampened. In addition,
strongly transferable pre-trained models save energy on nu-
merous downstream tasks where they can perform in data-
efficient and thus in an energy saving manner. Releasing
such pre-trained models to public incurs additional energy
savings, as research community can re-use already validated
models without necessity to train those from scratch again.

https://github.com/LAION-AI/scaling-laws-openclip
https://github.com/LAION-AI/scaling-laws-openclip


Dataset B/32 (34B) B/16 (34B) L/14 (34B) g/14 (13B) H/14 (34B)

INet 66.47 70.22 75.20 76.66 77.97
INet-v2 58.16 62.28 67.69 69.61 70.82
INet-R 76.47 80.59 87.41 88.65 89.32
INet-S 53.72 56.09 63.28 65.22 66.57
ObjNet 48.78 56.05 65.50 67.47 69.70
INet-A 25.43 38.23 53.88 57.11 59.23
CIFAR-10 93.65 94.94 96.64 97.05 97.42
CIFAR-100 75.47 76.83 83.36 83.91 84.68
MNIST 67.73 65.99 54.87 69.04 72.94
Flowers102 72.35 71.23 75.90 77.61 80.21
Cars 86.15 88.50 92.61 92.77 93.46
SVHN 43.51 51.39 46.30 60.33 56.13
FER2013 46.02 51.78 53.71 46.57 51.76
RenderedSST2 57.17 59.80 59.31 64.58 64.09
Pets 89.81 90.52 93.21 94.28 94.39
Caltech-101 83.50 83.83 85.04 85.22 85.04
VOC2007-Cl 79.75 78.85 80.52 81.03 77.61
SUN397 68.57 70.85 74.33 75.40 75.22
FGVC Aircraft 24.06 27.00 36.93 37.80 42.75
Country211 16.78 20.31 26.36 28.73 30.01
DTD 55.64 56.33 62.77 68.14 67.87
GTSRB 49.49 48.24 56.10 49.74 58.45
STL10 96.55 97.86 98.86 98.59 98.44
Retino 73.42 67.96 21.06 43.42 23.80
EuroSAT 46.94 53.46 65.15 64.80 71.74
RESISC45 60.71 62.76 66.67 71.71 69.57
PCAM 59.44 56.37 55.26 55.09 53.63
CLEVR Counts 15.02 21.49 31.09 33.19 27.84
CLEVR Dist 14.54 21.07 16.10 17.73 16.77
DSPRITES Orient 3.77 2.68 2.00 3.08 2.61
DSPRITES pos 2.80 3.30 3.15 3.54 3.14
SmallNORB Elv 11.70 11.30 10.95 11.34 11.13
SmallNORB Azim 5.86 5.67 5.63 5.88 5.50
DMLAB 17.48 19.93 22.43 19.02 14.20
KITTI Dist 27.14 17.16 22.93 14.63 11.11

VTAB+ (Avg.) 50.69 52.60 54.63 56.54 56.43

Table 17. Detailed zero-shot top-1 classification results of LAION-2B models on VTAB+ 35 tasks. We highlight the best results for each
downstream dataset.



Model Dataset BS. (global) LR. Warm. #samples. #GPUs Time (hrs.) GPU-h/MWh

B/32 LAION-80M 256(32768) 5e-4 2K 3B 128 7 836/0.29
B/32 LAION-80M 256(32768) 5e-4 2K 13B 128 33 4181/1.46
B/32 LAION-80M 256(88064) 1e-3 10K 34B 344 96 32953/11.53
B/32 LAION-400M 256(88064) 1e-3 10K 3B 344 3 1063/0.37
B/32 LAION-400M 672(86016) 1e-3 2K 13B 128 70 8912/3.12
B/32 LAION-400M 256(32768) 5e-4 2K 34B 128 87 11177/3.91
B/32 LAION-2B 256(88064) 1e-3 10K 3B 344 3 1121/0.39
B/32 LAION-2B 256(32768) 5e-4 2K 13B 128 39 4954/1.73
B/32 LAION-2B 96(79104) 1e-3 2K 34B 824 51 42307/14.81
B/16 LAION-80M 256(88064) 1e-3 10K 3B 344 6 1900/0.66
B/16 LAION-80M 512(90112) 1e-3 10K 13B 176 71 12518/4.38
B/16 LAION-80M 256(88064) 1e-3 10K 34B 344 70 24032/8.41
B/16 LAION-400M 256(88064) 1e-3 10K 3B 344 5 1713/0.60
B/16 LAION-400M 192(33792) 5e-4 10K 13B 176 61 10736/3.76
B/16 LAION-400M 512(90112) 1e-3 10K 34B 176 148 26009/9.10
B/16 LAION-2B 256(88064) 1e-3 10K 3B 344 5 1822/0.64
B/16 LAION-2B 512(90112) 1e-3 10K 13B 176 66 11675/4.09
B/16 LAION-2B 256(88064) 1e-3 10K 34B 344 121 41726/14.60
L/14 LAION-80M 224(88704) 1e-3 10K 3B 396 18 7243/2.54
L/14 LAION-80M 448(89600) 1e-3 10K 13B 200 102 20393/7.14
L/14 LAION-80M 224(89600) 1e-3 10K 34B 400 227 90647/31.73
L/14 LAION-400M 224(88704) 1e-3 10K 3B 396 17 6717/2.35
L/14 LAION-400M 112(86016) 1e-3 2K 13B 768 61 46735/16.36
L/14 LAION-400M 84(86016) 1e-3 10K 34B 1024 122 124727/43.65
L/14 LAION-2B 224(88704) 1e-3 10K 3B 396 18 7055/2.47
L/14 LAION-2B 84(86016) 1e-3 10K 13B 1024 52 53599/18.76
L/14 LAION-2B 224(86016) 1e-3 10K 34B 384 319 122509/42.88
H/14 LAION-2B 96(79104) 5e-4 2K 34B 824 279 229665/80.38
g/14 LAION-2B 80(64000) 5e-4 2K 13B 800 137 109392/38.29

Total 1058318/370.41

Table 18. Training hyper-parameters and resources used to for pre-training our models on LAION 80M, 400M, and 2B subsets. Note that BS
refer to batch size per GPU worker (with global the corresponding global batch size), LR to base learning rate, Warm to the total number of
warmup steps, Time to total training time in hours, GPU-h to GPU hours, MWh to the total energy consumed in Megawatt hours.
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Figure 12. Consistency of scaling trends for CLIP and openCLIP with additional CLIP ResNet models from OpenAI and trained on WIT.
Relationship between total compute (GMAC) and ImageNet zero-shot classification error rate (Left) and with MS-COCO image retrieval at
Recall@5 (Right).



Model Samples seen LAION-80M LAION-400M LAION-2B

ViT-B/32 3B 51.94 57.12 57.36
13B 56.46 63.23 62.53
34B 56.43 64.06 66.47

ViT-B/16 3B 57.55 62.68 61.82
13B 60.24 67.00 68.13
34B 61.28 69.00 70.22

ViT-L/14 3B 61.14 69.31 68.93
13B 63.96 73.06 73.10
34B 64.83 73.94 75.20

ViT-H/14 34B - - 77.97

ViT-g/14 13B - - 76.66

Table 19. Detailed results on ImageNet zero-shot accuracy.

Model Samples seen LAION-80M LAION-400M LAION-2B

ViT-B/32 3B 37.95 41.60 42.44
13B 42.23 48.97 48.83
34B 43.01 50.12 52.51

ViT-B/16 3B 43.48 47.82 48.07
13B 47.29 54.89 55.89
34B 49.29 57.14 58.65

ViT-L/14 3B 48.26 57.53 57.56
13B 52.23 63.84 64.61
34B 54.23 65.25 67.55

ViT-H/14 34B - - 71.13

ViT-g/14 13B - - 69.61

Table 20. Detailed results on ImageNet five robustness datasets
zero-shot accuracy (average over the five datasets is reported).

Model Samples seen LAION-80M LAION-400M LAION-2B

ViT-B/32 3B 51.04 56.29 57.01
13B 54.67 61.90 61.66
34B 54.72 62.28 65.05

ViT-B/16 3B 55.83 60.85 61.08
13B 57.83 63.64 66.11
34B 58.84 65.81 67.73

ViT-L/14 3B 58.42 65.63 66.21
13B 59.18 68.40 69.16
34B 59.84 68.62 71.08

ViT-H/14 34B - - 73.43

ViT-g/14 13B - - 72.40

Table 21. Detailed results on MS-COCO image retrieval Recall@5.

Model Samples seen LAION-80M LAION-400M LAION-2B

ViT-B/32 3B 67.16 73.38 73.10
13B 70.32 77.60 77.04
34B 70.78 77.46 79.58

ViT-B/16 3B 72.22 77.18 76.72
13B 73.84 79.62 81.00
34B 74.12 80.52 81.78

ViT-L/14 3B 74.90 80.78 79.86
13B 76.24 82.12 82.94
34B 75.96 83.44 84.00

ViT-H/14 34B - - 86.04

ViT-g/14 13B - - 85.36

Table 22. Detailed results on MS-COCO text retrieval Recall@5.

Model Samples seen LAION-80M LAION-400M LAION-2B

ViT-B/32 3B 76.00 80.50 82.16
13B 78.46 85.20 85.36
34B 78.98 85.90 88.26

ViT-B/16 3B 80.78 85.84 85.12
13B 84.76 88.16 89.90
34B 84.38 89.58 90.32

ViT-L/14 3B 84.16 89.14 89.82
13B 84.86 91.04 91.72
34B 85.70 91.28 92.92

ViT-H/14 34B - - 94.10

ViT-g/14 13B - - 93.48

Table 23. Detailed results on Flickr30K image retrieval Recall@5.

Model Samples seen LAION-80M LAION-400M LAION-2B

ViT-B/32 3B 88.20 91.60 92.70
13B 91.30 95.60 94.50
34B 90.70 95.60 96.10

ViT-B/16 3B 91.90 95.60 94.60
13B 94.90 96.80 97.60
34B 94.80 97.40 98.00

ViT-L/14 3B 93.60 97.80 96.70
13B 95.00 98.30 98.40
34B 96.90 97.70 98.70

ViT-H/14 34B - - 99.30

ViT-g/14 13B - - 99.10

Table 24. Detailed results on Flickr30K text retrieval Recall@5.



Name Width Emb. Depth Acts. Params GMAC

ViT-B/32 768 / 512 512 12 / 12 10 M 151 M 7.40
ViT-B/16 768 / 512 512 12 / 12 29 M 150 M 20.57
ViT-L/14 1024 / 768 768 24 / 12 97 M 428 M 87.73
ViT-H/14 1280 / 1024 1024 32 / 24 161 M 986 M 190.97
ViT-g/14 1408 / 1024 1024 40 / 24 214 M 1.37 B 290.74
ViT-G/14 1664 / 1280 1280 48 / 32 310 M 2.54 B 532.92

Table 25. Hyper-parameters of different architectures we consider. Emb refers to embedding size, Acts refers to the number of activations in
millions, and Params refers to the number of parameters in millions. GMAC refers to giga multiply–accumulates. All entries in the form of
A / B denote image and text parameters respectively.

Dataset Abbr. Test size #Classes

ImageNet INet 50,000 1,000
ImageNet-v2 INet-v2 10,000 1,000
ImageNet-R INet-R 30,000 200
ImageNet Sketch INet-S 50,889 1,000
ObjectNet ObjNet 18,574 113
ImageNet-A INet-A 7,500 200
CIFAR-10 - 10,000 10
CIFAR-100 - 10,000 100
MNIST - 10,000 10
Oxford Flowers 102 Flowers102 6,149 102
Stanford Cars Cars 8,041 196
SVHN - 26,032 10
Facial Emotion Recognition 2013 FER2013 7,178 7
RenderedSST2 - 1,821 2
Oxford-IIIT Pets Pets 3,669 37
Caltech-101 - 6,085 102
Pascal VOC 2007 Classification VOC2007-Cl 14,976 20
SUN397 - 108,754 397
FGVC Aircraft - 3,333 100
Country211 - 21,100 211
Describable Textures DTD 1,880 47
GTSRB - 12,630 43
STL10 - 8,000 10
Diabetic Retinopathy Retino 42,670 5
EuroSAT - 5,400 10
RESISC45 - 6,300 45
PatchCamelyon PCAM 32,768 2
CLEVR Counts - 15,000 8
CLEVR Object Distance CLEVR Dist 15,000 6
DSPRITES Orientation DSPRITES Orient 73,728 40
DSPRITES Position DSPRITES pos 73,728 32
SmallNORB Elevation SmallNORB Elv 12,150 9
SmallNORB Azimuth SmallNORB Azim 12,150 18
DMLAB - 22,735 6
KITTI closest vehicle distance KITTI Dist 711 4

MS-COCO - 5,000 -
Flickr30K - 1,000 -

Table 26. Datasets used for evaluating downstream performance. Adapted from [65].
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