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A. Implementation Details
All experiments are conducted on Nvidia A100 GPU

with PyTorch [9] framework. We use a 2D backbone pre-
trained on PASCAL VOC [8], and a 3D backbone pre-
trained on Kinetics [6] dataset. We freeze both backbones
for all our experiments. For training, we use Adam [7] op-
timizer with an initial learning rate of 0.0001 and decrease
it with a factor of 0.5 at {2, 3, 4, 5} epochs for UCF101-24
dataset and {3, 4, 5, 6} for JHMDB-21 dataset. Weight de-
cay is set to 0.0005 for the generalization. We set the chan-
nel dimension D as 512 for all our experiments. For back-
bone, we use ResNet 18 [5] for 3D-CNN, and DarkNet [10]
for 2D-CNN unless otherwise stated. We stack eight trans-
former encoder layers for the ODE function (L = 8). Multi-
step order (N ) is set to 4 for UCF101-24 and 2 for JHMDB-
21 unless specified. For the loss function for training, we set
γ = 2 and λ = 0.1.

B. Details of the toy example
The toy experiment is conducted based on the example

code of Neural ODE [1]. Specifically, we randomly
generate a spiral function that follows r=a+b·θ, and
sample data by adding random noise to the actual points
from the function.

C. Detailed Architecture
We provide the detailed architecture of Adamsformer in

Table 1 and descriptions of notations in Table 2. The output
size of each module is presented. We use a causal mask for
GPT-2 for parallel inference for the observed frames. We
further provide detail of the decoder in Fig. 1.

Figure 1. The decoder takes a latent tensor Zt and produces a
vector with channel #Anchor × (#Bbox elements + 1 + #Class) as
described in Sec 4.3.3. Please refer to [31] for detailed architecture
of the CFAM module.

Blocks Output Size Output Size

Video Encoder
2D-CNN H×W×3 H ′×W ′×D2D

3D-CNN H×W×L× 3 H ′×W ′×D3D

Conv H ′×W ′×(D2D+D3D) H ′×W ′×D
ODE Function GPT-2 T×H ′×W ′×D H ′×W ′×D
Temporal Conv - N×H ′×W ′×D H ′×W ′×D

Video Encoder CFAM H ′×W ′×D H ′×W ′×D
Conv H ′×W ′×D H ′×W ′×(5×(C+5))

Table 1. Detailed architecture of the AdamsFormer.

Notations Descriptions Notations Descriptions
H Height of image H ′ Height of latent tensor
W Width of image W ′ Width of latent tensor
L Length of video clip D Latent tensor dimension
C Number of action class D2D 2D-CNN output dimension

D3D 3D-CNN output dimension

Table 2. Summary of notations

D. Additional Experimental Results

D.1. Ablation Studies

We present the additional ablation study here. We com-
pare ODE-RNN [1], which also utilizes ODE, with our pro-
posed model by adding each component of AdamsFormer
to ODE-RNN in Table 3. We first compare ODE-RNN
and AdamsFormer with a stacked convolution layer as an
ODE function that is described in Sec 5.4 in our main pa-
per. ODE-RNN uses RNN to capture temporal information
from the encoded values from Encoder. Then it uses cap-
tured features as input for the ODE function. In contrast,
AdamsFormer directly takes the Encoder output as an input
for the ODE function. Further, AdamsFormer is supervised
to localize action even in observed frames. These differ-
ences lead to performance improvements, as shown in the
table. Further, as we compared in Sec. 5.4 in our main pa-
per, passing through all historical information as input for
the ODE function is more effective for temporal modeling
since it can help the model to attend to long-term temporal
information.

D.2. Qualitative Results

We provide addional qualitative results in this section.
For the figures, we use the model’s outputs trained with a
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Methods
Observation Ratio

20% 30% 40% 50%
TOTAL UNSEEN TOTAL UNSEEN TOTAL UNSEEN TOTAL UNSEEN

ODE-RNN - 34.84 - 35.59 - 37.71 - 39.70
Ours \w ODE function (Zt) 48.57 40.03 52.51 41.99 56.58 44.10 59.14 45.37
Ours \w ODE function (Z1:t)

Single-Step 47.00 39.54 51.42 42.75 55.41 44.41 60.13 47.39
Multi-Step 50.04 41.00 52.82 42.92 57.03 45.25 62.21 48.74

Table 3. Comparison of AdamsFormer with ODE-RNN.

Figure 2. Comparison of qualitative results on UCF101-24 dataset. We visualize action localization results on all our baselines and
AdamsFormer.

50 % of observation ratio. The red and blue boxes rep-
resent prediction and ground truth, respectively. The first
five frames are localization results on observed sequence,
whereas the next five frames are those of future frames.
Comparison with other methods We now compare qual-
itative results of different long-term temporal modeling
methods [1, 3, 4, 11] on UCF101-24 dataset in Fig. 2. We
can see that AdamsFormer localizes action more accurately
than other methods by capturing actor dynamics in the ob-
served frames.
Results on other datasets We present qualitative results
for the JHMDB-21 and Collective Activity datasets. The
JHMDB-21 results are depicted in Fig. 3. Despite the ac-
tions in the JHMDB-21 dataset being less dynamic com-
pared to other datasets, AdamsFormer effectively localizes
actions in future frames and outperforms other methods, as
demonstrated in Table 1 of the main paper.

We further evaluate AdamsFormer’s action localization
performance in a multi-agent scenario using the Collec-
tive Activity dataset [2]. This dataset comprises 44 short
video sequences featuring five activities: crossing, walk-

ing, waiting, talking, and queueing. Unlike UCF101-24 and
JHMDB-21, which contain up to two agents per video, the
Collective Activity dataset includes multiple agents in a sin-
gle video. We apply AdamsFormer, trained on the UCF101-
24 dataset with a 50% observation ratio, to localize actors
within the Collective Activity dataset. The qualitative re-
sults are visualized in Fig. 4. Our findings indicate that
AdamsFormer can successfully detect the locations of mul-
tiple actors.

E. Discussion & Limitations
An ODE function of AdamsFormer takes all previous la-

tent features Zi:t as input. However, this cannot be extended
to a longer sequence because of the quadratically increasing
memory requirement of the Transformer. One possible ap-
proach for this problem is leveraging the concept of long
short-term memories [12] that were recently introduced for
online action detection. We leave this for our future work.
Also, the validity of this work on multiple subsequent ac-
tions remains to be tested. This warrants further investiga-
tion to demonstrate our model’s usability.



Figure 3. Qualitative results of AdamsFormer on JHMDB-21.

Figure 4. Qualitative results of AdamsFormer on Collective activity.
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