
Supplementary Material: Automatic High Resolution Wire Segmentation and
Removal

A. Comparison with Pixel 6
We show a visual comparison between our model and

Pixel 6’s “Magic Eraser” feature in Figure 1. Without man-
ual intervention, Google Pixel 6’s “Magic Eraser” performs
well on wires with clean background, but suffers from thin
wires that are hardly visible ((A) upper), and also on wires
with complicated background ((A) lower). We also pass our
segmentation mask to our wire inpainting model to acquire
the wire removal result, as shown in the lower image of (B).

B. Failure cases
We show some challenging cases where our model fails

to predict accurate wire masks in Figure 2. These include
regions that are very similar to wires (top row), severe back-
ground blending (middle row) and extreme lighting condi-
tions (bottom row).

C. Panorama
Our two-stage model leverages the sparsity of wires in

natural images, and efficiently generalizes to ultra-high res-
olution images such as panoramas. We show one panoramic
image of 11K by 1.5K resolution in Figure 3. Note that our
method produces high-quality wire segmentation that cov-
ers wires that are almost invisible. As a result, our proposed
wire removal step can effectively remove these regions.

D. Segmentation and inpainting visualizations
We show our wire segmentation and inpainting results

in several common photography scenes as well as in some
challenging cases in Figure 4. We provide more visualiza-
tions of wire segmentation and subsequent inpainting re-
sults. Our model successfully handles numerous challeng-
ing scenarios, including strong backlit (top row), complex
background texture (2nd row), low light (3rd row), and
barely visible wires (4th row). A typical use case is shown
in the last row.

E. Experiments on other datasets
Most existing wire-like datasets either are at low reso-

lutions or are for specific purposes (e.g., aerial imaging)
and thus do not contain the scene diversity like WireSegHR
does. The suggested TTPLA [2] dataset shares the Power
Lines class with our dataset, although it only contains aerial
images. Table 1 shows evaluation results of the TTPLA
dataset on our model and also our WireSegHR dataset on
the TTPLA model.
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Figure 1. Comparison with Pixel 6. Our model can pick up
hardly visible wires that even in complicated backgrounds
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Figure 2. Failure cases. In some challenging cases, our model
fails to predict accurate masks. Zoom in to see detailed wire masks
in ground truth and prediction.



Figure 3. Segmentation and inpainting result for a panoramic image. Our model is scalable to very large images with very thin wires.

Dataset Model IoU (%)

TTPLA (Power Line only)
TTPLA (ResNet-50, 700× 700) 18.9

Ours (ResNet-50) 33.1
Ours (MiT-b2) 42.7

WireSegHR
TTPLA (ResNet-50, 700× 700) 3.5

Ours (ResNet-50) 47.8
Ours (MiT-b2) 60.8

Table 1. Comparison with TTPLA.

TTPLA is trained on fixed resolution (700 × 700) and
takes in the entire image for inference, which requires sig-
nificant downsampling of our test set. As a result, the qual-
ity of thin wires deteriorates in both the image and the label.
Our model drops in performance on the TTPLA dataset due
to different annotation definitions: we annotate all wire-like
objects while TTPLA only annotates power lines.

F. Additional training details
CascadePSP [1] We follow the default training steps pro-
vided by the CascadePSP code1. During training, we sam-
ple patches in the image that contain at least 1% of wire pix-
els. During inference, we feed the predictions of the global
DeepLabv3+ to the pretrained/retrained CascadePSP model
to get the refined wire mask. In both cases, we follow the
default inference code1 to obtain the final mask.

MagNet [3] MagNet2 obtains the initial mask predictions
from a single backbone trained on all refinement scales. For
a fair comparison, we adopt a 2-scale setting of MagNet,
similar to our two-stage model, where the image is down-
sampled to 1024 × 1024 in the global scale, and is kept at
the original resolution in the local scale. To this end, we
train a single DeepLabv3+ model by either downsampling

1https://github.com/hkchengrex/CascadePSP
2https://github.com/VinAIResearch/MagNet

the sample image to 1024 × 1024 or randomly cropping
1024 × 1024 patches at the original resolution. The sam-
pled patches contain at least 1% of wire pixels. We then
train the refinement module based on the predictions from
the DeepLabv3+ model, following the default setting. In-
ference is kept the same as the original MagNet model.

ISDNet [2] ISDNet3 performs inference on the entire im-
age without sliding window. As a result, during train-
ing, we resize all images to 5000 × 5000 and randomly
crop 2500× 2500 windows, such that the input images can
fit inside the GPUs. Sampled patches should contain 1%
wire pixels. During inference, all images are resized to
5000× 5000. We observe that this yields better results than
if we keep images below 5000×5000 at their original sizes.
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Figure 4. Segmentation and inpainting visualizations. Our model can handle several challenging scenes, including strongly backlit (top
row), background with complex texture (2nd row), low light (3rd row), and barely visible wires (4th row)


