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1. Supplementary material
1.1. Implementation Details

Implementation of ImpHMR. Following the existing
single image pose and shape estimation methods [6, 8, 10,
11], we use ResNet-50 [2] as the backbone model for our
image encoder g. Note that, because ImpHMR is trained
end-to-end manner, the weights of the image encoder g are
also updated during training. For the feature fields module,
foreground attention A adopts the spatial attention proposed
in [20] to focus on human-related features. The neural fea-
ture field represented by the MLP network h adopts the ob-
ject feature field suggested in [17]. For the MLP h, the size
of the input latent and output feature vector is changed to
2048. For HMR tasks, since it is not necessary to infer the
texture of humans, we condition h with a single latent vec-
tor zfg. For volume rendering, we sample 32 points on a
ray direction r, and the spatial resolution of the rendered
2D feature map is fixed to 4 × 4. In positional encoding,
the frequency octave is set to 10 and 4 for x and r, respec-
tively. The regressor R has the same architecture as the
regressor in SPIN [11] and is initialized with a pre-trained
model in [11]. The maximum iteration number of R is set
to 3 as in [8, 9, 11]. For the geometric guidance branch, de-
convolution D is composed of 5 layers of transposed convo-
lution along with BN [3] and ReLU activation, and outputs
a 128 × 128 resolution silhouette. During training, we use
Adam [7] optimizer with batch size 64. The λ2d, λ3d, λpose,
λshape, and λsilh. are set to 300, 300, 60, 0.06, and 30, re-
spectively. As in previous works, the learning rate is set to
5e−5, and the network is trained with 50 epochs.

Implementation of the baseline using PTN. In ablation
studies, we use the baseline model, Baseline-PTN, in which
the feature fields module has been replaced by a voxel-
based representation (i.e., PTN [21]) in ImpHMR to ver-
ify the efficacy of using implicit representation. To imple-
ment Baseline-PTN, we use the Decoder network proposed
in Yan et al. [21] consisting of Volume Generator and Per-

spective Transformer. In Baseline-PTN, Decoder takes a
human-related feature vector zfg as input. It generates a
feature volume with 4× 4× 4 resolution, and from the vol-
ume generates a projected feature viewed from a specific
viewing direction ϕ by perspective transform. In order to
generate an output of the same size as ImpHMR, we set
the channel size of the feature volume to 2048. In addi-
tion, since there is no volume density in Baseline-PTN, the
feature value to be projected is obtained through a max op-
eration when performing perspective projection.

1.2. Datasets

The mixture of 3D (i.e., MPI-INF-3DHP, Human3.6M) and
2D datasets (i.e., MPII, COCO, LSPET) is used for training.

MPI-INF-3DHP [16] is a 3D human pose benchmark
mostly taken in indoor environments. The dataset utilizes
a markerless motion capture system and contains 3D body
joint labels. We use the official training set of 8 subjects and
16 videos per subject for training.

Human3.6M [4] is a large-scale indoor 3D human pose
dataset containing 3.6 million video frames and correspond-
ing 2D and 3D body joint labels. It consists of 15 action cat-
egories and 7 subjects. We use 5 subjects (S1, S5, S6, S7,
S8) for training and 2 subjects (S9, S11) for testing. Also,
the dataset is subsampled from 50 to 25 frames per second.

3DPW [19] is a 3D human pose dataset obtained with
an IMU sensor and RGB camera in an in-the-wild envi-
ronment. It consists of 60 videos (24 train, 12 validation,
24 test) and 51K frames, annotated with SMPL parameters.
We use both for training and evaluation, where noted.

In-the-wild 2D datasets. We use MPII [1], COCO [15],
and LSPET [5] datasets for in-the-wild 2D human body
keypoint datasets. The MPII, COCO, and LSPET datasets
consist of human instances labeled with 2D human body
joints in amounts of 14k, 75k, and 7k, respectively. As in
PARE [10], we use the pseudo-ground-truth SMPL labels
provided by [6] for each dataset for training.
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Method Res.1 Res.2 Res.4 Res.6

METRO [13] 37.6 - - -
MeshGraphormer [14] 18.2 - - -
HybrIK [12] 23.2 - - -

ImpHMR (Ours) 88.8 88.4 87.1 78.2

Table 1. Comparison of inference speed. The numbers are in
frames per second (fps). The Res. denotes the spatial resolu-
tion of a 2D feature map in volume rendering for our method.
Thanks to efficient spatial representation in feature fields, Im-
pHMR shows about 2 ∼ 4 times faster fps compared to METRO,
MeshGraphormer, and HybrIK.

1.3. Entanglement Measurement

To quantitatively evaluate the 3D spatial construction
capability of ImpHMR, we define Entanglement between
the Shape and the Viewing direction (in short, ESV). Let
βϕ = [βϕ,1, · · · , βϕ,10] ∈ R10, where βϕ,i denotes i-th co-
efficient in the PCA shape space, be SMPL shape parame-
ters inferred by the model from an arbitrary viewing direc-
tion ϕ. Then, the standard deviation σi of the i-th shape
parameters βϕ,i for the changing in viewing direction ϕ can

be obtained as σi =
√

1
360

∑359◦

ϕ=0◦(βϕ,i − µi)2, where µi

denotes the mean value of the i-th shape parameters calcu-
lated by µi =

1
360

∑359◦

ϕ=0◦ βϕ,i. Finally, we can obtain ESV
by averaging the standard deviation σi of each shape coef-
ficient as ESV = 1

10

∑10
i=1 σi. The smaller the deviation

of the shape parameters inferred for the change in viewing
direction, the lower the ESV value is measured. And this
indicates that the shape and viewing direction are well dis-
entangled.

1.4. More Comparison of Inference Speed

Table 1 compares the inference speed (i.e., fps) between
ImpHMR and the current best-performing methods [12–
14]. For fair evaluation, we use the lightest backbone model
proposed in each paper (R50 [2], HRNet-W64 [18], and
R34 [2] for METRO [13], MeshGraphormer [14], and Hy-
brIK [12], respectively). Also, frames per second (fps) is
calculated by averaging the time it took for each model to
infer 10000 times of an input image of 224 × 224 size on
RTX 2080Ti GPU. As shown in Tab. 1, we can notice that
ImpHMR has 2 ∼ 4 times faster fps than METRO, Mesh-
Graphormer, and HybrIK, which are latest HMR methods.

1.5. Qualitative Results

Comparison by rotating the mesh inferred from the
canonical viewing direction. The reason for showing the
inferred SMPL mesh viewed from different viewing direc-
tions in the Fig. 7 (in Sec. 4.2) is to verify that our method
has learned well the prior knowledge about human appear-
ance on neural feature fields. In addition, since the MPJPE,

Figure 1. Qualitative comparison by rotating the mesh inferred
from the canonical viewing direction. For each method, the front
and side views of the mesh inferred from the canonical viewing
direction are shown in order from left to right.

Figure 2. Failure cases. Inference results of challenging scenar-
ios (i.e., heavy occlusion, indistinguishable from background, and
body shape of children) in which ImpHMR fails to reconstruct
pleasing results.

PA-MPJPE, and PVE metrics mean reconstruction errors in
3D space, we can expect that our method will show good re-
construction results in other views. For example, as shown
in Fig. 1, the mesh inferred from the canonical viewing di-
rection by ImpHMR shows more plausible poses in the side
view. Also, the first example in Fig. 1 shows the advantage
of ImpHMR in the presence of self-occlusion.

1.6. Failure Cases

Figure 2 shows the inference result for challenging sce-
narios in which ImpHMR fails to reconstruct pleasing re-
sults. As can be seen in Fig. 2, ImpHMR fails to infer when
most of the human body is occluded, or when the human
body is indistinguishable from the background or object,
and for the person who has the body shape of children.
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