
PartDistillation: Learning Parts from Instance Segmentation - Supplementary

Figure 1. We show the diversity analysis of the discovered plots
from both PartDistillation and supervised model trained on Par-
tImageNet dataset. Similar to Fig. 2 of the main paper, we draw
the same conclusion that there are larger number of salient discov-
ery, that are unique.

1. Diversity Study

Here we show diversity study of the unsupervised part
discovery. The purity evaluation in the main paper (Fig. 2)
does not consider redundant part discovery. A model can
discover 8 different “wheel” of vehicle class from different
images, while failing to discover other parts like “window”
or “bonnet”. Therefore, we measured the total number of
unique parts from the discovered parts. Specifically, from
the 600 balanced set of object classes (inside/outside Par-
tImageNet subtree), manual annotators count the number of
unique parts from the parts that has 3 or more consistent
parts in a 3 × 3 collage. In Fig. 1, we show the percent-
age of unique discovery of the supervised model trained
on PartImageNet and PartDistillation. From the plot, we
can draw two conclusions: (1) PartDistillation discover 2x
more unique parts compared to the supervised model, and
(2) PartDistillation does not suffer distribution gap like the
supervised model. In Fig. 5, 6, 7, 8, 9, 10, 11, we visual-
ize non-cherry-picked images of discovered parts. Note that
this type of manual annotation is significantly cheaper than
the usual segmentation annotation.

2. Method Details
The main architecture of PartDistillation is based on

Mask2Former [4] with SwinL [13] backbone pretrained on
ImageNet-21K [7] classification dataset. We explain details
of implementation for each stage of training pipeline.

Initial instance segmentation model. PartDistillation be-
gins with a strong instance segmentation model, as noted in
Sec. 4.1 of the main paper. The Mask2Former is trained on
COCO-Instance Segmentation dataset [12] for 100 epochs,
closely following the original paper [4]. This includes the
number of queries Nq = 200, the hyperparameters for
losses (λcls = 2, λmask = 5, λdice = 5), etc. Unless oth-
erwise mentioned, we follow the same original setting for
other training, both PartDistillation and baselines.

Combining with Detic [18] framework. PartDistillation
segments parts based on instance segmentation predictions,
as described in Sec. 4.1, Eqn. 1 of the main paper. PartDis-
tillation extend self-supervised part segmentation to over
21K object classes, and getting high quality object instance
segmentation is a critical component. Therefore, we adopt
Detic [18], a strong open-vocabulary instance segmentation
model that segments and classifies object instances directly
from the text embedding of the class name. Therefore, we
train PartDistillation with the Detic framework in a naive
fashion; we keep two separate segmentation models (Detic
and Mask2Former) and use the Detic’s prediction to pro-
vide instance segmentation mask to train PartDistillation.
As noted in the experiment section Tab. 5 of the main paper
and Tab. 4, the Mask2Former feature resulted the strongest
initial part segments to train part proposals. This simple
solution worked well for the purpose of our project, and a
future direction is to build a unified framework from the
base.

Part segments. To learn class-agnostic part proposals, we
start by grouping the pixel-level features of our pretrained
Mask2Former architecture and get a set of part segments.
Specifically, we use the backbone feature of the last two lev-
els of features (namely, res3 and res4) interpolated and con-
catenated, as we experimentally found optimal, in Tab. 1.
For every object instance segmentation mask Mo

i , we group
the pixel-level features on the mask by K-Means cluster-

1



ing. As seen in Fig. 6 (left) of the main paper, we choose
the optimal number of per-instance cluster k = 4. We fol-
low scikit-learn [16]’s K-Means clustering protocol to find
a good clustering by repeating 10 times. After clustering,
we apply dense-CRF [10] to smooth-out the boundaries.
Specifically, the clustering is done on × 1

8 image size on the
feature map (res3-level). Then, the resulting segments are
up-sampled to match the image size, and smoothed out with
dense-CRF. We set hyperparameters of the dense-CRF: for
the Gaussian kernel, θγ = 3, w2 = 3, and for the Bilat-
eral kernel, θα = 20, θβ = 13, w1 = 10. Since we apply
on discrete label maps, we set the ground truth probability
to be 0.7 (other than θα and pgt = 0.7, we follow the de-
fault setting). All the process can be done efficiently offline
in parallel, as the encoder part of PartDistillation is frozen
during training.

Part-proposal learning. With the part segments, we train
our class-agnostic query-based part decoder Dp. The train-
ing follows the same Hungarian matching and learning pro-
cess as Mask2Former, where each part segment gets posi-
tive binary label (y = 1) and the part segmentation mask,
M̂p

i . One notable difference is that for point-based losses in
Mask2Former, we sample training points at random instead
of the importance sampling of the original Mask2Former,
as the part segments from clustering have noisy decision
boundary by nature. Specifically, we sample the same
amount of 12544 training points but entirely at random.
We keep the same number of queries (Nq = 200) as in-
stance queries for the whole image. Similar to the encoder,
the decoder layers are also initialized from the COCO in-
stance segmentation model. The only difference here is
the number of classes during training (No

c = Np
c = 1

for class-agnostic part segmentation) and the training point
sampling strategy. We train the model (decoder) for 50k
iterations with the batch size of 128 (4 images per GPU),
with the learning rate of 0.0001 on AdamW [14] optimizer.
We train with LargeScaleJittering [8], random cropping and
random flipping augmentation. We resize images such that
the longer side is 640. This is our default training setting
and kept same for all model training unless otherwise men-
tioned.

Class-specific part ranking. Once class-agnostic part de-
coder is trained, we estimate the density of the part segmen-
tation for each object class co. Specifically, we accumulate
part-level query features fp

i from the decoder Dp (i.e., the
query output features of the part decoder). As mentioned
in Sec. 4.3 of the main paper, we have two postprocess-
ing steps to choose more salient part predictions. First, we
convert the overlapping part proposals into per-pixel predic-
tions. That is, for each pixel location x ∈ Mo

i , we assign
the pixel to argmaxj M

p
j (x)s

p
j part query, where j ≤ Np.

We define the score map of mask for each query j as

Mp
j (x) = P (y(x) = 1|qpj = 1) (1)

where y(x) = 1 if there is a part at location x and 0 other-
wise, and spj = P (qpj = 1). This process assigns a (possibly
empty) set of pixels to each part query. Let’s define such set
of pixels as M̃p

j for all part queries qpj . We can measure
the ratio of the assigned part area for each query qpj that is
matched to an object Mo

i :

rj =
|M̃p

j |
|Mo

i |
(2)

Then, we apply (a) an area filter τr = 0.05 and (b) a score
filter τs = 0.3:

q̃pj =

{
qpj if rj > τr ∧ spj > τs

ø otherwise
(3)

where ø queries are ignored. This cleans out significant
amount of noisy part proposals. Next, we accumulate the
resulting part queries across dataset for each class co, and
use the density estimation with unit Gaussian prior, similar
to Snell et al. [17]. This is equivalent to applying K-Means
clustering and using the relative distance from a point to
each cluster centroids to model the probability. We use this
score as our final ranking function for part classification:

rk(f
p
j |f

o
i ) =

exp(−∥Dp(fp
j , f

o
i )− µo

k∥2)∑Nk

l=1 exp(−∥Dp(fp
j , f

o
i )− µo

l ∥2︸ ︷︷ ︸
∆
=Dl(fp

j ,f
o
i )

)
(4)

Here we set the number of modes (clusters) Np
c = 8 for all

object classes.

Final self-training. With the part ranking function, we now
have a model that has (a) per-object-class part classifier and
(b) corresponding part segmentation. We use this model as
an initial model for self-training by treating each part mask
M̃p

j and the associated label yj = argmaxk rk(f
p
j |fo

i ).
Then, for all object mask Mo

i in the dataset, we have the
pseudo-labels

Ypseudo = {(M̃p
j , yj) : q̃

p
j ̸= ø} (5)

We train No
c = 21000 classifiers for each of the object

classes in ImageNet-21K, and for each classifier we have
Np

c = 8 part classes. During training, we only apply gradi-
ent to the classifier with the particular object-class, and the
scoring (softmax) is only among the Np

c part classes.

rk(f
p
j |f

o
i ) =

exp((W ô
k )

⊤Dp(fp
j , f

o
i ) + bôk)∑Np

c

l=1 exp((W
ô
l )

⊤Dp(fp
j , f

o
i ) + bôl )

(6)



where ô is the corresponding object class that fo
i is from.

During inference, we use the prediction’s object class pre-
diction to get part scores. Final self-training completes Part-
Distillation pipeline. For final self-training, we train the
model for 120k iterations, with the learning rate of 0.0001
on AdamW optimizer.

Few-shot Training. For few-shot training, we trained all
models (supervised and PartDistillation) on AdamW opti-
mizer with the learning rate of 0.00001. We adaptively
chose the number of iterations to train to avoid overfitting.
For every 1% of data, we trained for 1k iterations. We pro-
cess images the same way as other training (image size and
augmentation).

3. Baseline Details

Supervised models. For all our supervised baselines,
we initialized with the same architectures and pretrained
weights, which is Mask2Former with SwinL backbone, pre-
trained on COCO Instance Segmentation for 100 epochs.
For each dataset, we train two versions of supervised mod-
els where first we only train class-agnostic part segmen-
tation model and second train a class-specific part model.
The former model gives the most apples-to-apples compar-
ison to our first-stage model after proposal learning, and
we observe training for class-agnostic part segmentation
performed better on AR@200 metric compared to class-
specific counterpart, as seen in Tab. 2. For training, we fol-
low the default training recipe of the original Mask2Former.
We use AdamW optimizer with learning rate 0.0001 and
train for 20k iterations on 128 images per batch (4 im-
ages per GPU). Similar to PartDistillation, we apply random
crop, random scale and random flip augmentations. The im-
ages are processed the same way as PartDistillation training.

One-stage self-training. One-stage self-training baseline
is the baseline of our own. We test the effectiveness of the
two-stage nature of self-training in PartDistillation by ap-
plying the most straight-forward self-training recipe simi-
lar to MDC [5]. More specifically, instead of getting “per-
instance part segment” by clustering as described in Sec.
4.2 of the main paper, we accumulate pixel-level features fo

i

of all instances Mo
i (features within the object masks) with

the same object class across dataset and apply clustering.
The resulting cluster assignment directly becomes segmen-
tation pseudo-labels with part cluster IDs. This is equivalent
to measuring the density of the pixel-level features as per-
pixel part predictions. We apply K-Means clustering on the
pixel-level features with K = 8, and self-train with the ob-
tained labels with the same setting as PartDistillation. We
train this baseline for 120k iterations with the learning rate
of 0.0001 on AdamW optimizer.

Porting Choudhury et al. [6] to larger architectures.
Comparing PartDistillation with prior works such as
Choudhury et al. [6] is impossible, since these methods
work well when trained on a single object class. Regardless,
we compare with existing works in Tab. 2 of the main paper.
To show that the superiority of PartDistillation is not merely
due to the advancement of model architecture and pretrain
weights, we train Choudhury et al. closely following the
initial codebase but with comparable model architecture.
Training this for multi-object-class setting failed to learn
any meaningful predictions. For single-object-class setting,
training with Mask2Former framework, same setting as our
model, struggled converging despite highly rigorous hy-
perparameter tuning. Following the original DeepLab-like
framework [3] with losses on pixel-level features worked
reasonably well, as reported in Tab. 2 of the main paper.

We have two versions of Choudhury et al., one for quan-
titative evaluation in Tab. 2 of the main paper and for man-
ual evaluation in Fig. 4 of the main paper. For both ver-
sions, we have the following setting. Similar to the orig-
inal paper, we apply color jittering and random TPS aug-
mentation [2]. The DeepLab-like framework is composed
of backbone layers and prediction layers. We initialized
the same weight for SwinL backbone used in our model
(COCO-pretrained weights). We trained all single-object-
class models with learning rate η = 0.00001, AdamW op-
timizer for 30k iterations. We trained with batch size of 16
(2 images per GPU) as the training this model takes large
memory. For Tab. 2, we use the original hyperparameters:
λvc = 30, λeq = 5.7 × 103, λsc = 5, λct = 2.3 × 103

for visual consistency loss, equivariance loss, semantic con-
sistency loss, and contrastive loss, respectively. T num-
ber of parts K = 4, with the image size 256, and other
settings closely follow the original paper. For the man-
ual evaluation, we rigorously tuned the hyperparameters
on PartImageNet [9] dataset, and we use λvc = 1, λeq =
1.0× 103, λsc = 100, λct = 1.0× 104. Similar to PartDis-
tillation training, images are resized so that the larger side
is 640 with the number of parts K = 8.

4. Experiments
Here we report various results and experiment details

that were omitted from the main paper due to space limit.

Evaluation metrics. We provide more details about the
mean Intersection over Union (mIOU) metric in unsuper-
vised setting. Measuring the quality of class-specific pre-
diction is hard. A common practice in the literature is by
mapping the cluster IDs to ground truth labels, either by
Hungarian matching [11] or majority voting. Hungarian
matching is useful when the number of labels is known in
advance. Since we do not know the number of parts for
each of the 21K object classes, we use majority vote to map



the cluster IDs to labels. Majority vote favors classes with
large quantity, but all our metrics are averaged over classes
(balanced over classes). After mapping to the ground truth
labels, we evaluate the mapped predictions with the stan-
dard mIOU metric.

Zero-shot evaluation. Here we describe details of
how zero-shot evaluation is done in Tab. 3 of the main
paper. AR@200 is localization-only metric, and we use
the standard evaluation protocol. For mIOU metric for all
methods, evaluating on a new (target) dataset requires re-
mapping the existing labels. This can be done in two ways:
(1) clustering the predictions explicitly on the target im-
ages with labels and perform majority-voting-based map-
ping, or (2) using existing prediction labels and perform
majority-voting-based mapping from confusion matrix. We
name them mIOU-clustered and mIOU-mapped, re-
spectively. The latter (2) is more straight-forward way to
evaluate. However, when the source and target datasets
share many common object classes but the granularity of
parts differ a lot, mapping directly from confusion matrix
can be misleading; models may be able to differentiate
“arms” and “torso” but may produce a single “body” label.
Therefore, we take the former (1) way and show that all
methods (especially the supervised baselines) benefit from
it, in Tab. 3.

Manual evaluation. Here we provide more de-
tails of manual evaluation. We first get 10K object
classes from 21K original object classes by remov-
ing “non-object” or “object without parts” cate-
gories. Specifically, we remove all subtrees of the
following classes: food,foodstuff, room,
herb, tree, fungus, event, act, area,
grass, geological formation, sauce,
woody plant, structure, abstraction,
casting, plant organ, mixed drink,
plant part, body part, part, region,
mechanism, fabric, material, vine,
substance, beverage, attribute, natural
phenomenon, meal, cosmetic, weed. Then,
we randomly sample 10K classes from the remaining
ImageNet classes. The 100, 500, 1K, 5K, 10K classes are
sampled from this 10K classes at random. The 300/300
classes inside/outside subtrees of PartImageNet [9] are
sampled at random from WordNet [15] hierarchy using
NLTK library [1]. Since PartDistillation as well as all the
baselines are initialized with a strong instance segmentation
model, these models tend to produce instance segmentation
when it sees unknown objects. We remove such predictions
for all methods by filtering out part predictions that has IoU
larger than 50% of the object mask.

Supervised baselines on source dataset. We show the per-

res3 res4 res5 AR@10

✓ 10.8
✓ 23.4

✓ 20.6
✓ ✓ 27.6

✓ ✓ 26.1
✓ ✓ ✓ 25.3

Table 1. Detailed ablation for multi-level feature fusion for pixel
grouping. Our default setting (Mask2Former on COCO pre-
trained SwinL backbone) is used to measure the localization on
PartImageNet-val,test splits. Gray row is chosen to be our
default.

Train Test AR@200 mIOU
Pascal Part-train Pascal Part-val 47.3 (44.9) 29.0

PartImageNet-train PartImageNet-val,test 73.7 (73.4) 48.7

Table 2. Supervised baseline models tested on their source dataset.
Please note that for a fair comparison, we trained the baseline mod-
els that are compared on AR@200 metric on proposals only, as it
consistently had better results across different datasets (with stan-
dard baseline numbers inside parenthesis). For class-specific part
segmentation, we report mIOU-clustered.

Train Test mIOU-clustered mIOU-mapped
Pascal Part Pascal Part 29.0 43.2
Pascal Part PartImageNet 34.9 16.3

PartImageNet PartImageNet 48.7 68.7
PartImageNet Pascal Part 21.8 10.8

Table 3. We show that directly mapping source labels to target
labels with confusion matrix suffers a lot due to the discrepancy in
part definition such as granularity, as discussed in Sec. 4. In the
main paper, we report mIOU-clustered for zero-shot evalua-
tion.

formance of the supervised baselines on the dataset that they
are trained. In Tab. 2, we report the class-agnostic mod-
els for AR@200 and class-specific models for mIOU. For
AR@200, we additionally show the class-specific part mod-
els’ performance in gray. For mIOU, we report both mIOU-
clustered and mIOU-mapped.

Direct mapping vs clustering for zero-shot. As discussed
in Sec. 4, we reported the models performance from part
clustering results. That is, similar to our part ranking pro-
cess, we cluster the part-level query features with K = 8
and use majority voting to evaluate for each target object
class. We report both results in Tab. 3, and show that for all
datasets, clustering-based evaluation had better number for
supervised baselines for zero-shot cases.



Feature Dataset Pretrain Task Frakework AR@1 AR@10

SwinB LVIS+COCO Open Vocab. Detic 2.7 10.8
SwinB COCO Instance Seg. Mask2Former 6.6 27.0

SwinL COCO Instance Seg. Mask2Former 6.6 27.6
SwinL COCO Panoptic Seg. Mask2Former 6.6 27.1
SwinL Cityscapes Instance Seg. Mask2Former 5.1 21.7
SwinL Cityscapes Semantic Seg. Mask2Former 5.5 22.5
SwinL Cityscapes Panoptic Seg. Mask2Former 5.3 21.9
SwinL ADE20K Instance Seg. Mask2Former 5.8 24.5
SwinL ADE20K Semantic Seg. Mask2Former 6.0 24.8
SwinL ADE20K Panoptic Seg. Mask2Former 5.9 24.8

Table 4. More ablations on part segmentation by pixel grouping
from different architectures, datasets, tasks, and framework. Gray
row is chosen to be our default.

Per-pixel Pred. Area Thres. (τr) Score Thres. (τs) mIOU-clustered

18.5
✓ 40.2

✓ 21.3
✓ 40.8

✓ ✓ 41.5
✓ ✓ ✓ 48.0

Table 5. Ablation results for postprocessing steps in PartDistilla-
tion. Gray row is chosen to be our default.

5. Ablation Studies

Initial features. In Tab. 4, we show more ablation results
for getting part segments by pixel grouping. Together with
the results from Tab. 5 of the main paper, the choice of
backbone (swinL), pretrain task (COCO), and the frame-
work (Mask2Former) are the most critical factors.

Postprocesses. In our part ranking step, we estimate the
density of the clusters of the part proposals for each object
class. We apply several postprocessing steps where (1) con-
vert the proposals unique per-pixel, (2) have area threshold,
and (3) have a confidence threshold. In Tab. 5, we show that
each of these steps are essential.

6. Visualizations
For all visualization, it is best viewed in color and

zoomed-in.

Part segments. In Fig. 2, we visualize the pixel grouping
quality for the initial part segmentation. We show that the
model architecture, pretrain task, and framework matter a
lot. The visualization was generated from val,test splits
of PartImageNet dataset.

Final results. In Fig. 3, we visualize some predictions
of the baselines (supervised, “one-stage self-training”, and
PartDistillation) on the val split of Pascal Parts dataset.

Supervised models suffer the domain gap (incomplete /
missing segmentation).

Discovered parts. In Fig. 4, we show some more exam-
ple collages of the part discovery result that annotators see,
generated by a fully-trained PartDistillation model. Each
collage has 9 randomly sampled images with the same dis-
covered parts highlighted in red. In Fig. 5, 6, 7, 8, 9, 10, 11,
we visualize non-cherry-picked images of discovered parts.
We randomly sample object classes from the 600 balanced
ImageNet-21K classes that are inside and outside PartIma-
geNet subtree. We visualize 3 random images at each row
for each discovered part that is annotated as “consistent” by
the annotators. For all object classes, PartDistillation make
8 part discovery.

References
[1] Steven Bird and Edward Loper. NLTK: The natural language

toolkit. In Proceedings of the ACL Interactive Poster and
Demonstration Sessions, pages 214–217, Barcelona, Spain,
July 2004. Association for Computational Linguistics. 4

[2] Fred L. Bookstein. Principal warps: Thin-plate splines and
the decomposition of deformations. IEEE Transactions on
pattern analysis and machine intelligence, 11(6):567–585,
1989. 3

[3] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L. Yuille. Deeplab: Semantic im-
age segmentation with deep convolutional nets, atrous con-
volution, and fully connected crfs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 40(4):834–848,
2018. 3

[4] Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. 2022. 1

[5] Jang Hyun Cho, Utkarsh Mall, Kavita Bala, and Bharath
Hariharan. Picie: Unsupervised semantic segmentation us-
ing invariance and equivariance in clustering. In CVPR,
2021. 3

[6] Subhabrata Choudhury, Iro Laina, Christian Rupprecht, and
Andrea Vedaldi. Unsupervised part discovery from con-
trastive reconstruction. Advances in Neural Information Pro-
cessing Systems, 34:28104–28118, 2021. 3

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009. 1

[8] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-
Yi Lin, Ekin D. Cubuk, Quoc V. Le, and Barret Zoph. Simple
copy-paste is a strong data augmentation method for instance
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2918–2928, June 2021. 2

[9] Ju He, Shuo Yang, Shaokang Yang, Adam Kortylewski, Xi-
aoding Yuan, Jie-Neng Chen, Shuai Liu, Cheng Yang, and
Alan Yuille. Partimagenet: A large, high-quality dataset of
parts. arXiv preprint arXiv:2112.00933, 2021. 3, 4



(a) Image (b) SwinL-Detic (c) ResNet101-M2F-COCO (d) SwinL-ImageNet21K (e) SwinL-M2F-COCO

Figure 2. Visualization of the pixel grouping results from different backbone, framework, and pretrain tasks. We choose (e) as our default
setting.

[10] Philipp Krähenbühl and Vladlen Koltun. Efficient inference
in fully connected crfs with gaussian edge potentials. In
NIPS, 2011. 2

[11] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 2(1-2):83–97,
1955. 3

[12] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 1

[13] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021. 1

[14] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 2

[15] George A. Miller. WordNet: A lexical database for En-
glish. In Human Language Technology: Proceedings of a
Workshop held at Plainsboro, New Jersey, March 8-11, 1994,
1994. 4

[16] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort,
Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu

Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,
et al. Scikit-learn: Machine learning in python. the Journal
of machine Learning research, 12:2825–2830, 2011. 2

[17] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. Advances in neural informa-
tion processing systems, 30, 2017. 2

[18] Xingyi Zhou, Rohit Girdhar, Armand Joulin, Phillip
Krähenbühl, and Ishan Misra. Detecting twenty-thousand
classes using image-level supervision. arXiv preprint
arXiv:2201.02605, 2022. 1



(a) Supervised - Cityscapes Parts (b) Supervised - PartImageNet (c) One-stage Self-training (d) PartDistillation

Figure 3. Visualization of the baselines and PartDistillation predictions on val-split of Pascal Part dataset. Supervised models ((a) and
(b)) critically suffer from domain gap.



Figure 4. Some example collages that the annotators see. Each collage has 9 randomly selected images and the corresponding part
highlighted in red.



Figure 5. Randomly sampled ImageNet class and the discovered parts. Each row has 3 random images of the same discovered part.



Figure 6. Randomly sampled ImageNet class and the discovered parts. Each row has 3 random images of the same discovered part.



Figure 7. Randomly sampled ImageNet class and the discovered parts. Each row has 3 random images of the same discovered part.



Figure 8. Randomly sampled ImageNet class and the discovered parts. Each row has 3 random images of the same discovered part.



Figure 9. Randomly sampled ImageNet class and the discovered parts. Each row has 3 random images of the same discovered part.



Figure 10. Randomly sampled ImageNet class and the discovered parts. Each row has 3 random images of the same discovered part.



Figure 11. Randomly sampled ImageNet class and the discovered parts. Each row has 3 random images of the same discovered part.



Figure 12. Randomly sampled ImageNet class and the discovered parts. Each row has 3 random images of the same discovered part.


	. Diversity Study
	. Method Details
	. Baseline Details
	. Experiments
	. Ablation Studies
	. Visualizations

