
Supplementary Material for itKD: Interchange Transfer-based Knowledge
Distillation for 3D Object Detection

A. Student configuration

Table 1. The number of parameters of the teacher, the student
(1/2), and the student (1/4).

Model Point cloud encoder Backbone Head Total
Teacher 4,608 4,806,400 413,003 5,224,011 (5.2M)

Student (1/2) 4,608 1,212,288 302,411 1,519,307 (1.5M)
Student (1/4) 4,608 308,416 247,115 560,139 (0.6M)

Conventional KD methods for 3D object detection fo-
cused on improving performance or reducing latency. How-
ever, the main purpose of our method is how to reduce the
parameters of 3D object detector. In this respect, we inves-
tigate which component of the backbone architecture has
most parameters as shown in Table 1. Since the backbone
has 4.8M parameters, which occupies about 92% of the
5.2M parameters of the teacher network, We apply channel
reduction to each layers of backbone because channel re-
duction maintains performance better than depth reduction
on detection task [2] [4]. Finally, our student (1/4) has 8.7×
less parameters and student (1/2) has 3.5× less parameters.

B. Performance of the student 1/2

Table 2. Comparison with different KD methods in Waymo and
nuScenes validation set.

Method Waymo nuScenes
Vehicle Pedestrian Cyclist Total NDS mAP

Teacher [7] 65.11 54.99 60.28 60.13 59.45 48.83
Student 62.19 53.19 56.45 57.28 56.79 45.45
Baseline 63.16 53.81 57.21 58.06 57.95 46.78

FitNet [3] 63.45 54.10 57.31 58.29 57.97 46.78
EOD-KD [1] 62.80 53.70 57.27 57.92 58.07 46.83

TOFD [8] 60.99 52.98 57.44 57.14 57.54 46.10
SE-SSD [9] 63.02 54.21 57.86 58.36 57.30 46.03

Obj. DGCNN [5] 63.07 54.23 57.77 58.36 57.96 46.92
SparseKD [6] 62.57 53.75 58.06 58.13 57.59 46.54

Ours 63.92 54.53 58.66 59.04 58.32 47.18

To verify the generality of our method, we compare
the student (1/2) with other KD methods on Waymo and
nuScenes validation set. Table 2 shows the mAPH of level2
performance of KD methods on Waymo, and NDS and
mAP on nuScenes. Our student (1/2) shows better perfor-

mance than other methods on both datasets. In conclusion,
we confirm that our method has generality regardless of the
parameter reduction ratio.

C. Pseudocode

Algorithm 1: PyTorch-style pseudocode for the
channel-wise autoencoder
c t: Channel size of the teacher’s backbone
output

c s: Channel size of the student’s backbone
output

c e: Channel size of the compressed
representation

x t: The map-view feature of the teacher
network

x s: The map-view feature of the student
network

Define the channel-wise autoencoder as class
class ChannelWiseAE(nn.Module):

def init (self, c t, c s, c e):
Sampling layers to adapt channel size
self.downs = nn.Conv2d(c t, c s, (1, 1))
self.ups = nn.Conv2d(c s, c t, (1, 1))
Build encoder layers
self.encoder =

nn.Sequential(
nn.Conv2d(c t, 128, (1, 1)),
nn.Conv2d(128, 64, (1, 1)),
nn.Conv2d(64, c e, (1, 1)))

Build decoder layers
self.decoder =

nn.Sequential(
nn.Conv2d(c e, 64, (1, 1)),
nn.Conv2d(64, 128, (1, 1)),
nn.Conv2d(128, c t, (1, 1)))

def forward(self, x t, x s):
Pass through the autoencoder
x s = self.ups(x s)
comp t = self.encoder(x t)
comp s = self.encoder(x s)
decomp t = self.decoder(comp t)
decomp s = self.decoder(comp s)
decomp t = self.downs(decomp t)
Calculate loss values
comp repr = F.l1 loss(comp s, comp t)
decomp s2t = F.l1 loss(s decode, x t)
decomp t2s = F.l1 loss(t decode, x s)
Return total loss
return comp repr + decomp s2t + decomp t2s

Algorithm 1 and 2 show PyTorch-style pseudo-code for
the channel-wise autoencoder and the head relation-aware
self-attention, respectively. The interchange transfer and

Algorithm 2: PyTorch-style pseudocode for the
relation-aware self-attention
x t: Detection results of the teacher network
x s: Detection results of the student network
fusion: 1×1 convolution layer for fusion on
channel dimension

ind: Index of objects’ location

Define the self-attention
def self attention(x):

Calculate attention score
score = F.softmax(torch.matmul(x.transpose(-2,
-1), x) / torch.sqrt(x.size(-2)), dim=-2)

return torch.matmul(x, score)

Define the head relation-aware self-attention
def relation aware self attention(x):

Generate feature sequences
seq = x.gather(ind)
Apply the intra-head relation attention
for seq head in seq:

intra at1tention.append(self attention(seq head))
intra attention = torch.cat(inter attention,
dim=1)

Apply the inter-head relation attention
inter attention = (self attention(seq))
Pass through the fusion layer
attention =

fusion(torch.cat([intra attention,
inter attention], dim=1))

return attention

Apply the relation-aware self-attention
rasa t = relation aware self attention(x t)
rasa s = relation aware self attention(x s)
Calculate the attentive head loss
attentive head = F.l1 loss(rasa s, rasa t)
Return the loss
return attentive head

the compressed representation loss are included in Algo-
rithm 1. Algorithm 2 contains the head attention loss. As
we described in section 3.3 of the main paper, we use the l1
loss as a similarity function.

D. Visualization of the student feature

We visualize the output features of the student, the en-
coder, and the decoder, which take the same input as in Fig.
4 of the main paper. As shown in Fig. 1, the visualization
results show that both objects and backgrounds are well-
activated.

E. Inference time

Table 3. Lantency and FPS.
Model latency FPS

Teacher 46.0 21.7
Ours 23.4 42.7

Table 3 shows the
inference time of the
teacher and our student
(Ours, 1/4). The in-
ference time is aver-
aged 100 frames with a
NVIDIA Titan V. Our

student network achieves a computation speed of 42.7 FPS.

Figure 1. Output feature visualization of the student backbone.

Table 4. Performances on the voxel-based encoder.
Method Teacher Student Baseline SparseKD Ours

mAPH/L2 65.50 63.26 64.03 64.05 64.26

F. Performance of voxel-based encoders

We made additional experiments in Table 4 that shows
the results of the voxel-based encoder. Our method shows
64.26% mAPH/L2 and outperforms SparseKD, which is the
latest KD method for 3D object detectors.

G. Limitation

The limitation of the interchange transfer lies in the fact
that both the teacher and the student networks must main-
tain the same spatial resolution, as the interchange transfer
is based on feature-based knowledge distillation. We also
note that using the autoencoder often requires additional ef-
fort for identifying the proper network structure or its hyper-
parameters for the different 3D object detection, but we be-
lieve that the deviations of the optimal hyper-parameters are
not high.

H. Potential negative societal impacts

Our KD method aims to make an efficient 3D object de-
tection network, which is crucial for the autonomous driv-
ing system that requires real-time response. One potential
negative societal impact of our method is that the quantita-
tive performance of the student network follows similarly to
that of the teacher network; also, it has not been confirmed
whether there are any parts that can be fatal to the safety of
the autonomous driving system in the wild.

References
[1] Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Man-

mohan Chandraker. Learning efficient object detection models
with knowledge distillation. Advances in neural information
processing systems, 30, 2017. 1

[2] Quanquan Li, Shengying Jin, and Junjie Yan. Mimicking very
efficient network for object detection. In Proceedings of the
ieee conference on computer vision and pattern recognition,
pages 6356–6364, 2017. 1

[3] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou,
Antoine Chassang, Carlo Gatta, and Yoshua Bengio. Fitnets:
Hints for thin deep nets. arXiv preprint arXiv:1412.6550,
2014. 1

[4] Tao Wang, Li Yuan, Xiaopeng Zhang, and Jiashi Feng. Dis-
tilling object detectors with fine-grained feature imitation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4933–4942, 2019. 1

[5] Yue Wang and Justin M Solomon. Object dgcnn: 3d object
detection using dynamic graphs. Advances in Neural Infor-
mation Processing Systems, 34, 2021. 1

[6] Jihan Yang, Shaoshuai Shi, Runyu Ding, Zhe Wang, and Xiao-
juan Qi. Towards efficient 3d object detection with knowledge
distillation. arXiv preprint arXiv:2205.15156, 2022. 1

[7] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-
based 3d object detection and tracking. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recog-
nition, pages 11784–11793, 2021. 1

[8] Linfeng Zhang, Yukang Shi, Zuoqiang Shi, Kaisheng Ma, and
Chenglong Bao. Task-oriented feature distillation. Advances
in Neural Information Processing Systems, 33:14759–14771,
2020. 1

[9] Wu Zheng, Weiliang Tang, Li Jiang, and Chi-Wing Fu. Se-
ssd: Self-ensembling single-stage object detector from point
cloud. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 14494–14503,
2021. 1

