### Supplementary Document for

# Dynamic Neural Network for Multi-Task Learning Searching across Diverse Network Topologies

Wonhyeok Choi, Sunghoon Im\* Department of Electrical Engineering & Computer Science, DGIST, Daegu, Korea {smu06117, sunghoonim}@dgist.ac.kr

## **1. Implementation Details**

**Central Network Architecture** We set the first 12 hidden states, the same as the VGG-16 [35], except for the maxpooled states as:

| State                     | Shape                |
|---------------------------|----------------------|
| $v_0$ (image state)       | B, 3, H, W           |
| $v_1$                     | B, 64, H, W          |
| $v_2$                     | B, 64, H, W          |
| $v_3$                     | B, 128, H//2, W//2   |
| $v_4$                     | B, 128, H//2, W//2   |
| $v_5$                     | B, 256, H//4, W//4   |
| $v_6$                     | B, 256, H//4, W//4   |
| $v_7$                     | B, 256, H//4, W//4   |
| $v_8$                     | B, 512, H//8, W//8   |
| $v_9$                     | B, 512, H//8, W//8   |
| $v_{10}$                  | B, 512, H//8, W//8   |
| $v_{11}$                  | B, 512, H//16, W//16 |
| $v_{12}$                  | B, 512, H//16, W//16 |
| $v_{13}$ (read-out state) | B, 512, H//16, W//16 |

Table 1. Shape of all hidden states

where shapes of states are represented as (batch size, number of channels, height, and width). Then, we link the states with edges as a block that consists of sequential operations as follows:

| $e_{ij}: v_i \to v_j$                                 |
|-------------------------------------------------------|
| $conv3x3(C_{v_i}, C_{v_j}, padding = 1, stride = 1),$ |
| BatchNorm( $C_{v_i}$ ),                               |
| ReLU(),                                               |
| Maxpool(kernel size = $H_{v_j}//H_{v_i}$ )            |



\*Corresponding author



Figure 1. Task-specific head configuration

where  $C_{v_i}$  is the number of channels of  $v_i$ , and  $H_{v_i}$  is the height of  $v_i$ . We illustrate the overall structure of the central network with M = 3 in Fig. 4. The read-in layer embeds the interpolated feature into all hidden states  $v_1, v_2, ..., v_{12}$ with  $\alpha_i \in \mathcal{A}$ . Then, the network sequentially updates the hidden states with task-specific weight  $\gamma_{ij} \in \Gamma$  that corresponds to  $e_{ij}$ . Lastly, the read-out layer extracts the weighted sum of interpolated hidden states with  $\beta_i \in \mathcal{B}$ .

**Task-specific Head Architecture** For NYU-v2 [34], Cityscapes [7], and PASCAL-Context [26], we use the ASPP [5] architecture, a popular architecture for pixel-wise prediction tasks, as our task-specific heads.

**Training Details** The overall training process of our framework consists of 3 stages: warm-up, search, and finetuning. For Omniglot [17], we train the network 2,000, 3,000, and 5,000 iterations for warm-up, search, and finetuning stages, respectively. Similarly, for both NYU-v2 [34] and Cityscapes [7], we train the network 5,000, 15,000, and 20,000 iterations for warm-up, search, and fine-tuning stages, respectively. For PASCAL-Context [26], the network is trained for 10,000, 20,000, and 30,000 iterations for the warm-up, search, and fine-tuning stages, respectively.



Figure 2. Model performance with respect to the proposed flow-restriction (Omniglot)



Figure 3. Model performance with respect to the proposed flow-restriction (NYU-v2, Cityscapes, PASCAL-Context)

We train all baselines [1, 11, 12, 20, 25, 29, 32, 38] with the same number of fine-tuning iterations for a fair comparison. Before the fine-tuning stage, we rewind the model parameters to the parameters at the end of the warm-up stage. We also report the learning rates of model weights parameters and upper-level parameters, and the balancing hyperparameter of squeeze loss  $\mathcal{L}_{sq}$  in the Tab. 3.

# 2. Full Results of All Metrics

In addition to the relative performance of all datasets (in the main paper), we report all the absolute task performance of NYU-v2, Cityscapes, and PASCAL-Context dataset with baseline in Tab. 5-7.

## 3. Trade-off Curves of All Datasets

Similar to Sec. 4.4 in the main paper, we analyze performance and computational complexity with respect to the flow constant M for all datasets. We plot the degradation ratio of the performance (left y-axis) and parameter (right

| Dataset             | weight lr | upper lr | $\lambda_{sq}$ |
|---------------------|-----------|----------|----------------|
| Omniglot [17]       | 0.0001    | 0.01     | 0.05           |
| NYU-v2 [34]         | 0.0001    | 0.01     | 0.05           |
| Cityscapes [7]      | 0.0001    | 0.05     | 0.01           |
| PASCAL-Context [26] | 0.0001    | 0.01     | 0.005          |

Table 3. Hyperparameters for each dataset We report the learning rates of model weights parameters (weight lr), and upper-level parameters (upper lr). and balancing weight  $\lambda_{sq}$  for squeeze loss  $\mathcal{L}_{sq}$ . Our framework does not use task-balancing parameters.

y-axis) by changing the flow constant M in Fig. 2-3. The final task performance degradation of each dataset, including Omniglot, NYU-v2, Cityscapes, and PASCAL-Context, is marked by blue, purple, pink, and orange, respectively. Additionally, the number of parameters of search space for Omniglot, and other datasets are marked by a gray dashed line.

# 4. Ablation Studies

#### 4.1. Three-stage learning scheme

We follow the learning scheme as traditional Nas-style MTL three-stage learning. To show that the three-stage learning scheme boosts the overall performance on multi-task learning scenarios, we report the relative task performance of each stage in Tab. 4.

| Method $(M = 5)$  | $\Delta_{\mathcal{T}_{sem}}\uparrow$ | $\Delta_{\mathcal{T}_{dep}}\uparrow$ | $\Delta_{\mathcal{T}_{norm}}\uparrow$ | $  \Delta_{\mathcal{T}} \uparrow$ | $\mid$ # of Param $\downarrow$ |
|-------------------|--------------------------------------|--------------------------------------|---------------------------------------|-----------------------------------|--------------------------------|
| with three-stages | 0.0                                  | 0.0                                  | 0.0                                   | 0.0                               | 1.04                           |
| w/o warm-up       | -7.4                                 | -3.7                                 | -3.0                                  | -4.3                              | 1.04                           |
| w/o search + FBR  | -14.8                                | -0.1                                 | -3.3                                  | -6.1                              | 6.50                           |
| w/o fine-tune     | -13.6                                | -9.7                                 | -3.3                                  | -8.9                              | 1.04                           |

Table 4. Ablation studies of three-stages on NYU-v2 dataset

#### 4.2. Ablation studies on key components

Lastly, we provide the absolute task performance of all metrics for ablation studies of four key components; flow restriction, read-in/out layers, flow-based reduction, and squeeze loss in Tab. 8.



Figure 4. Central network configuration

|                |           | Sema    | antic Seg.  |                    | Dep  | th Pred                      | liction    |            | Surface Normal Prediction |        |                              |                |              |
|----------------|-----------|---------|-------------|--------------------|------|------------------------------|------------|------------|---------------------------|--------|------------------------------|----------------|--------------|
| Method         | # Params↓ | mIoI1 ↑ | Pixel Acc ↑ | Error $\downarrow$ |      | $\theta$ , within $\uparrow$ |            |            | Er                        | ror↓   | $\delta$ , within $\uparrow$ |                |              |
|                |           |         |             | Abs                | Rel  | 1.25                         | $1.25^{2}$ | $1.25^{3}$ | Mean                      | Median | $11.25^{\circ}$              | $22.5^{\circ}$ | $30^{\circ}$ |
| Single-Task    | 3         | 27.5    | 58.9        | 0.62               | 0.25 | 57.9                         | 85.8       | 95.7       | 17.5                      | 15.2   | 34.9                         | 73.3           | 85.7         |
| Shared Bottom  | 1         | 24.1    | 57.2        | 0.58               | 0.23 | 62.4                         | 88.2       | 96.5       | 16.6                      | 13.4   | 42.5                         | 73.2           | 84.6         |
| Cross-Stitch   | 3         | 25.4    | 57.6        | 0.58               | 0.23 | 61.4                         | 88.4       | 95.5       | 17.2                      | 14.0   | 41.4                         | 70.5           | 82.9         |
| Sluice         | 3         | 23.8    | 56.9        | 0.58               | 0.24 | 61.9                         | 88.1       | 96.3       | 17.2                      | 14.4   | 38.9                         | 71.8           | 83.9         |
| NDDR-CNN       | 3.15      | 21.6    | 53.9        | 0.66               | 0.26 | 55.7                         | 83.7       | 94.8       | 17.1                      | 14.5   | 37.4                         | 73.7           | 85.6         |
| MTAN           | 3.11      | 26.0    | 57.2        | 0.57               | 0.25 | 62.7                         | 87.7       | 95.9       | 16.6                      | 13.0   | 43.7                         | 73.3           | 84.4         |
| DEN            | 1.12      | 23.9    | 54.9        | 0.97               | 0.31 | 22.8                         | 62.4       | 88.2       | 17.1                      | 14.8   | 36.0                         | 73.4           | 85.9         |
| AdaShare       | 1         | 30.2    | 62.4        | 0.55               | 0.20 | 64.5                         | 90.5       | 97.8       | 16.6                      | 12.9   | 45.0                         | 71.7           | 83.0         |
| Ours $(M = 5)$ | 1.04      | 31.8    | 63.7        | 0.56               | 0.21 | 64.3                         | 90.2       | 97.7       | 16.5                      | 13.2   | 43.9                         | 71.7           | 82.9         |
| Ours $(M = 7)$ | 1.31      | 32.3    | 64.3        | 0.54               | 0.20 | 64.7                         | 90.5       | 98.1       | 16.4                      | 12.9   | 43.1                         | 73.8           | 86.1         |
| Ours $(M = 9)$ | 1.63      | 32.1    | 64.6        | 0.54               | 0.20 | 64.7                         | 91.1       | 99.1       | 16.4                      | 13.1   | 43.4                         | 73.8           | 86.0         |

Table 5. NYU v2 full results

|                   |                       | Sema | ntic Seg.    | Depth Prediction |      |      |                              |            |  |
|-------------------|-----------------------|------|--------------|------------------|------|------|------------------------------|------------|--|
| Model             | # Params $\downarrow$ |      | Dinal A as A | Erro             | or↓  | (    | $\delta$ , within $\uparrow$ |            |  |
|                   |                       | miou | Pixel Acc    | Abs              | Rel  | 1.25 | $1.25^{2}$                   | $1.25^{3}$ |  |
| Single-Task       | 2                     | 40.2 | 74.7         | 0.017            | 0.33 | 70.3 | 86.3                         | 93.3       |  |
| Shared Bottom     | 1                     | 37.7 | 73.8         | 0.018            | 0.34 | 72.4 | 88.3                         | 94.2       |  |
| Cross-Stitch [25] | 2                     | 40.3 | 74.3         | 0.015            | 0.30 | 74.2 | 89.3                         | 94.9       |  |
| Sluice [32]       | 2                     | 39.8 | 74.2         | 0.016            | 0.31 | 73.0 | 88.8                         | 94.6       |  |
| NDDR-CNN [11]     | 2.07                  | 41.5 | 74.2         | 0.017            | 0.31 | 74.0 | 89.3                         | 94.8       |  |
| MTAN [20]         | 2.41                  | 40.8 | 74.3         | 0.015            | 0.32 | 75.1 | 89.3                         | 94.6       |  |
| DEN [1]           | 1.12                  | 38.0 | 74.2         | 0.017            | 0.37 | 72.3 | 87.1                         | 93.4       |  |
| AdaShare [38]     | 1                     | 41.5 | 74.9         | 0.016            | 0.33 | 75.5 | 89.8                         | 94.9       |  |
| Ours $(M = 5)$    | 0.96                  | 42.8 | 75.1         | 0.016            | 0.32 | 74.8 | 89.1                         | 94.2       |  |
| Ours $(M = 7)$    | 1.16                  | 46.4 | 75.6         | 0.016            | 0.33 | 74.0 | 89.3                         | 94.0       |  |
| Ours $(M = 9)$    | 1.31                  | 46.5 | 75.4         | 0.016            | 0.32 | 75.4 | 90.4                         | 96.1       |  |

Table 6. Cityscapes full results

| Mathad            | # Donoma                      | Semantic Seg. | Part Seg. | Saliency | Surface Normal | Edge   |  |
|-------------------|-------------------------------|---------------|-----------|----------|----------------|--------|--|
| Methou            | $\#$ r at at its $\downarrow$ | mIoU ↑        | mIoU ↑    | mIoU ↑   | Mean↓          | Mean ↓ |  |
| Single-Task       | 5                             | 63.9          | 57.6      | 65.2     | 14.0           | 0.018  |  |
| Shared Bottom     | 1                             | 59.7          | 57.2      | 63.0     | 16.0           | 0.018  |  |
| Cross-Stitch [25] | 5                             | 63.1          | 59.7      | 65.1     | 14.2           | 0.018  |  |
| Sluice [32]       | 5                             | 62.9          | 56.9      | 64.9     | 14.4           | 0.019  |  |
| NDDR-CNN [11]     | 5.61                          | 63.2          | 56.1      | 65.2     | 14.7           | 0.018  |  |
| MTAN [20]         | 5.21                          | 61.6          | 57.2      | 65.0     | 14.7           | 0.019  |  |
| AdaShare [38]     | 1                             | 63.1          | 59.9      | 64.9     | 14.1           | 0.018  |  |
| LTB [12]          | 3.19                          | 59.5          | 56.5      | 65.3     | 14.2           | 0.018  |  |
| PHN [29]          | 2.51                          | 59.7          | 56.7      | 64.6     | 14.0           | 0.018  |  |
| Ours $(M = 5)$    | 1.93                          | 63.7          | 59.6      | 65.8     | 14.0           | 0.018  |  |
| Ours $(M = 7)$    | 1.91                          | 63.9          | 57.5      | 66.3     | 13.8           | 0.018  |  |
| Ours $(M = 9)$    | 2.31                          | 63.9          | 59.7      | 66.4     | 13.8           | 0.018  |  |

Table 7. PASCAL-Context full results

|                          | Sema   | Depth Prediction |                    |      |                              |            | Surface Normal Prediction |         |        |                              |                |              |
|--------------------------|--------|------------------|--------------------|------|------------------------------|------------|---------------------------|---------|--------|------------------------------|----------------|--------------|
| Method                   | mIoII↑ | oU↑ Pixel Acc↑   | Error $\downarrow$ |      | $\theta$ , within $\uparrow$ |            |                           | Error ↓ |        | $\delta$ , within $\uparrow$ |                |              |
|                          |        |                  | Abs                | Rel  | 1.25                         | $1.25^{2}$ | $1.25^{3}$                | Mean    | Median | $11.25^{\circ}$              | $22.5^{\circ}$ | $30^{\circ}$ |
| Ours $(M = 7)$           | 32.3   | 64.3             | 0.54               | 0.20 | 64.7                         | 90.5       | 98.1                      | 16.4    | 12.9   | 43.1                         | 73.8           | 86.1         |
| w/o flow-restriction     | 32.1   | 64.6             | 0.54               | 0.20 | 64.2                         | 90.7       | 98.1                      | 16.5    | 12.9   | 42.9                         | 73.7           | 87.2         |
| w/o read-in/out          | 31.3   | 64.5             | 0.54               | 0.20 | 64.5                         | 90.3       | 98.0                      | 16.6    | 13.0   | 42.5                         | 73.0           | 86.3         |
| w/o flow-based reduction | 32.5   | 64.9             | 0.53               | 0.20 | 64.8                         | 90.7       | 98.3                      | 16.4    | 12.9   | 43.1                         | 73.8           | 86.3         |
| w/o $\mathcal{L}_{sq}$   | 32.1   | 64.6             | 0.54               | 0.20 | 64.7                         | 90.5       | 98.1                      | 16.5    | 13.0   | 42.5                         | 73.6           | 87.0         |

Table 8. Ablation Studies in NYU-v2

# References

- [1] Chanho Ahn, Eunwoo Kim, and Songhwai Oh. Deep elastic networks with model selection for multi-task learning. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 6529–6538, 2019. 2, 4
- [2] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. Designing neural network architectures using reinforcement learning. arXiv preprint arXiv:1611.02167, 2016.
- [3] Hakan Bilen and Andrea Vedaldi. Integrated perception with recurrent multi-task neural networks. *Advances in neural information processing systems*, 29, 2016.
- [4] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task and hardware. arXiv preprint arXiv:1812.00332, 2018.
- [5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. *IEEE transactions on pattern analysis and machine intelligence*, 40(4):834–848, 2017. 1
- [6] Ying Chen, Jiong Yu, Yutong Zhao, Jiaying Chen, and Xusheng Du. Task's choice: Pruning-based feature sharing (pbfs) for multi-task learning. *Entropy*, 24(3):432, 2022.
- [7] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understanding. In *Proc.* of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. 1, 2
- [8] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. *The Journal of Ma-chine Learning Research*, 20(1):1997–2017, 2019.
- [9] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu, Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural networks. *arXiv preprint arXiv:1701.08734*, 2017.
- [10] Yuan Gao, Haoping Bai, Zequn Jie, Jiayi Ma, Kui Jia, and Wei Liu. Mtl-nas: Task-agnostic neural architecture search towards general-purpose multi-task learning. In *Proceedings* of the IEEE/CVF Conference on computer vision and pattern recognition, pages 11543–11552, 2020.
- [11] Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L Yuille. Nddr-cnn: Layerwise feature fusing in multi-task cnns by neural discriminative dimensionality reduction. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 3205–3214, 2019. 2, 4
- [12] Pengsheng Guo, Chen-Yu Lee, and Daniel Ulbricht. Learning to branch for multi-task learning. In *International Conference on Machine Learning*, pages 3854–3863. PMLR, 2020. 2, 4
- [13] Junshi Huang, Rogerio S Feris, Qiang Chen, and Shuicheng Yan. Cross-domain image retrieval with a dual attributeaware ranking network. In *Proceedings of the IEEE international conference on computer vision*, pages 1062–1070, 2015.
- [14] Brendan Jou and Shih-Fu Chang. Deep cross residual learning for multitask visual recognition. In *Proceedings of the*

24th ACM international conference on Multimedia, pages 998–1007, 2016.

- [15] Zhuoliang Kang, Kristen Grauman, and Fei Sha. Learning with whom to share in multi-task feature learning. In *ICML*, 2011.
- [16] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
- [17] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through probabilistic program induction. *Science*, 350(6266):1332–1338, 2015. 1, 2
- [18] Jason Liang, Elliot Meyerson, and Risto Miikkulainen. Evolutionary architecture search for deep multitask networks. In *Proceedings of the Genetic and Evolutionary Computation Conference*, pages 466–473, 2018.
- [19] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv preprint arXiv:1806.09055, 2018.
- [20] Shikun Liu, Edward Johns, and Andrew J Davison. Endto-end multi-task learning with attention. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 1871–1880, 2019. 2, 4
- [21] Jiaqi Ma, Zhe Zhao, Jilin Chen, Ang Li, Lichan Hong, and Ed H Chi. Snr: Sub-network routing for flexible parameter sharing in multi-task learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 33, pages 216– 223, 2019.
- [22] Krzysztof Maziarz, Efi Kokiopoulou, Andrea Gesmundo, Luciano Sbaiz, Gabor Bartok, and Jesse Berent. Flexible multi-task networks by learning parameter allocation. arXiv preprint arXiv:1910.04915, 2019.
- [23] Elliot Meyerson and Risto Miikkulainen. Beyond shared hierarchies: Deep multitask learning through soft layer ordering. arXiv preprint arXiv:1711.00108, 2017.
- [24] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink, Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. Evolving deep neural networks. In *Artificial intelligence in the age of neural networks and brain computing*, pages 293–312. Elsevier, 2019.
- [25] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch networks for multi-task learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3994–4003, 2016. 2, 4
- [26] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler, Raquel Urtasun, and Alan Yuille. The role of context for object detection and semantic segmentation in the wild. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 891–898, 2014. 1, 2
- [27] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural architecture search via parameters sharing. In *International conference on machine learning*, pages 4095–4104. PMLR, 2018.
- [28] Prajit Ramachandran and Quoc V Le. Diversity and depth in per-example routing models. In *International Conference on Learning Representations*, 2018.

- [29] Dripta S Raychaudhuri, Yumin Suh, Samuel Schulter, Xiang Yu, Masoud Faraki, Amit K Roy-Chowdhury, and Manmohan Chandraker. Controllable dynamic multi-task architectures. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10955–10964, 2022. 2, 4
- [30] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In *International Conference on Machine Learning*, pages 2902–2911. PMLR, 2017.
- [31] Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098, 2017.
- [32] Sebastian Ruder, Joachim Bingel, Isabelle Augenstein, and Anders Søgaard. Sluice networks: Learning what to share between loosely related tasks. *arXiv preprint arXiv:1705.08142*, 2, 2017. 2, 4
- [33] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixtureof-experts layer. arXiv preprint arXiv:1701.06538, 2017.
- [34] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support inference from rgbd images. In *European conference on computer vision*, pages 746–760. Springer, 2012. 1, 2
- [35] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 1
- [36] Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and Silvio Savarese. Which tasks should be learned together in multi-task learning? In *International Conference on Machine Learning*, pages 9120–9132. PMLR, 2020.
- [37] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. A genetic programming approach to designing convolutional neural network architectures. In *Proceedings of the genetic and evolutionary computation conference*, pages 497–504, 2017.
- [38] Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate Saenko. Adashare: Learning what to share for efficient deep multi-task learning. Advances in Neural Information Processing Systems, 33:8728–8740, 2020. 2, 4
- [39] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: stochastic neural architecture search. *arXiv preprint arXiv:1812.09926*, 2018.
- [40] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578, 2016.
- [41] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures for scalable image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 8697–8710, 2018.