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1. Implementation Details

Central Network Architecture We set the first 12 hidden

states, the same as the VGG-16 [35], except for the max-

pooled states as:

State Shape

v0 (image state) B, 3, H, W

v1 B, 64, H, W

v2 B, 64, H, W

v3 B, 128, H//2, W//2

v4 B, 128, H//2, W//2

v5 B, 256, H//4, W//4

v6 B, 256, H//4, W//4

v7 B, 256, H//4, W//4

v8 B, 512, H//8, W//8

v9 B, 512, H//8, W//8

v10 B, 512, H//8, W//8

v11 B, 512, H//16, W//16

v12 B, 512, H//16, W//16

v13 (read-out state) B, 512, H//16, W//16

Table 1. Shape of all hidden states

where shapes of states are represented as (batch size, num-

ber of channels, height, and width). Then, we link the states

with edges as a block that consists of sequential operations

as follows:

eij : vi → vj

conv3x3(Cvi
, Cvj

, padding = 1, stride = 1),

BatchNorm(Cvj
),

ReLU(),

Maxpool(kernel size = Hvj
//Hvi

)

Table 2. The operation block of eij
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Figure 1. Task-specific head configuration

where Cvi
is the number of channels of vi, and Hvi

is the

height of vi. We illustrate the overall structure of the central

network with M = 3 in Fig. 4. The read-in layer embeds

the interpolated feature into all hidden states v1, v2, ..., v12
with αi ∈ A. Then, the network sequentially updates

the hidden states with task-specific weight γij ∈ Γ that

corresponds to eij . Lastly, the read-out layer extracts the

weighted sum of interpolated hidden states with βi ∈ B.

Task-specific Head Architecture For NYU-v2 [34],

Cityscapes [7], and PASCAL-Context [26], we use the

ASPP [5] architecture, a popular architecture for pixel-wise

prediction tasks, as our task-specific heads.

Training Details The overall training process of our frame-

work consists of 3 stages: warm-up, search, and fine-

tuning. For Omniglot [17], we train the network 2,000,

3,000, and 5,000 iterations for warm-up, search, and fine-

tuning stages, respectively. Similarly, for both NYU-v2 [34]

and Cityscapes [7], we train the network 5,000, 15,000,

and 20,000 iterations for warm-up, search, and fine-tuning

stages, respectively. For PASCAL-Context [26], the net-

work is trained for 10,000, 20,000, and 30,000 iterations for

the warm-up, search, and fine-tuning stages, respectively.
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Figure 2. Model performance with respect to the proposed

flow-restriction (Omniglot)

Figure 3. Model performance with respect to the proposed

flow-restriction (NYU-v2, Cityscapes, PASCAL-Context)

We train all baselines [1, 11, 12, 20, 25, 29, 32, 38] with the

same number of fine-tuning iterations for a fair comparison.

Before the fine-tuning stage, we rewind the model parame-

ters to the parameters at the end of the warm-up stage. We

also report the learning rates of model weights parameters

and upper-level parameters, and the balancing hyperparam-

eter of squeeze loss Lsq in the Tab. 3.

2. Full Results of All Metrics

In addition to the relative performance of all datasets (in

the main paper), we report all the absolute task performance

of NYU-v2, Cityscapes, and PASCAL-Context dataset with

baseline in Tab. 5-7.

3. Trade-off Curves of All Datasets

Similar to Sec. 4.4 in the main paper, we analyze per-

formance and computational complexity with respect to the

flow constant M for all datasets. We plot the degradation

ratio of the performance (left y-axis) and parameter (right

Dataset weight lr upper lr λsq

Omniglot [17] 0.0001 0.01 0.05

NYU-v2 [34] 0.0001 0.01 0.05

Cityscapes [7] 0.0001 0.05 0.01

PASCAL-Context [26] 0.0001 0.01 0.005

Table 3. Hyperparameters for each dataset We report the learn-

ing rates of model weights parameters (weight lr), and upper-level

parameters (upper lr). and balancing weight λsq for squeeze loss

Lsq . Our framework does not use task-balancing parameters.

y-axis) by changing the flow constant M in Fig. 2-3. The

final task performance degradation of each dataset, includ-

ing Omniglot, NYU-v2, Cityscapes, and PASCAL-Context,

is marked by blue, purple, pink, and orange, respectively.

Additionally, the number of parameters of search space for

Omniglot, and other datasets are marked by a gray dashed

line.

4. Ablation Studies

4.1. Three­stage learning scheme

We follow the learning scheme as traditional Nas-style

MTL three-stage learning. To show that the three-stage

learning scheme boosts the overall performance on multi-

task learning scenarios, we report the relative task perfor-

mance of each stage in Tab. 4.

Method (M = 5) ∆Tsem
↑ ∆Tdep

↑ ∆Tnorm
↑ ∆T ↑ # of Param ↓

with three-stages 0.0 0.0 0.0 0.0 1.04

w/o warm-up -7.4 -3.7 -3.0 -4.3 1.04

w/o search + FBR -14.8 -0.1 -3.3 -6.1 6.50

w/o fine-tune -13.6 -9.7 -3.3 -8.9 1.04

Table 4. Ablation studies of three-stages on NYU-v2 dataset

4.2. Ablation studies on key components

Lastly, we provide the absolute task performance of all

metrics for ablation studies of four key components; flow

restriction, read-in/out layers, flow-based reduction, and

squeeze loss in Tab. 8.



Figure 4. Central network configuration



Semantic Seg. Depth Prediction Surface Normal Prediction

Method # Params ↓
mIoU ↑ Pixel Acc ↑

Error ↓ θ, within ↑ Error ↓ δ, within ↑

Abs Rel 1.25 1.252 1.253 Mean Median 11.25◦ 22.5◦ 30◦

Single-Task 3 27.5 58.9 0.62 0.25 57.9 85.8 95.7 17.5 15.2 34.9 73.3 85.7

Shared Bottom 1 24.1 57.2 0.58 0.23 62.4 88.2 96.5 16.6 13.4 42.5 73.2 84.6

Cross-Stitch 3 25.4 57.6 0.58 0.23 61.4 88.4 95.5 17.2 14.0 41.4 70.5 82.9

Sluice 3 23.8 56.9 0.58 0.24 61.9 88.1 96.3 17.2 14.4 38.9 71.8 83.9

NDDR-CNN 3.15 21.6 53.9 0.66 0.26 55.7 83.7 94.8 17.1 14.5 37.4 73.7 85.6

MTAN 3.11 26.0 57.2 0.57 0.25 62.7 87.7 95.9 16.6 13.0 43.7 73.3 84.4

DEN 1.12 23.9 54.9 0.97 0.31 22.8 62.4 88.2 17.1 14.8 36.0 73.4 85.9

AdaShare 1 30.2 62.4 0.55 0.20 64.5 90.5 97.8 16.6 12.9 45.0 71.7 83.0

Ours (M = 5) 1.04 31.8 63.7 0.56 0.21 64.3 90.2 97.7 16.5 13.2 43.9 71.7 82.9

Ours (M = 7) 1.31 32.3 64.3 0.54 0.20 64.7 90.5 98.1 16.4 12.9 43.1 73.8 86.1

Ours (M = 9) 1.63 32.1 64.6 0.54 0.20 64.7 91.1 99.1 16.4 13.1 43.4 73.8 86.0

Table 5. NYU v2 full results

Semantic Seg. Depth Prediction

Model # Params ↓
mIoU ↑ Pixel Acc ↑

Error ↓ δ, within ↑

Abs Rel 1.25 1.252 1.253

Single-Task 2 40.2 74.7 0.017 0.33 70.3 86.3 93.3

Shared Bottom 1 37.7 73.8 0.018 0.34 72.4 88.3 94.2

Cross-Stitch [25] 2 40.3 74.3 0.015 0.30 74.2 89.3 94.9

Sluice [32] 2 39.8 74.2 0.016 0.31 73.0 88.8 94.6

NDDR-CNN [11] 2.07 41.5 74.2 0.017 0.31 74.0 89.3 94.8

MTAN [20] 2.41 40.8 74.3 0.015 0.32 75.1 89.3 94.6

DEN [1] 1.12 38.0 74.2 0.017 0.37 72.3 87.1 93.4

AdaShare [38] 1 41.5 74.9 0.016 0.33 75.5 89.8 94.9

Ours (M = 5) 0.96 42.8 75.1 0.016 0.32 74.8 89.1 94.2

Ours (M = 7) 1.16 46.4 75.6 0.016 0.33 74.0 89.3 94.0

Ours (M = 9) 1.31 46.5 75.4 0.016 0.32 75.4 90.4 96.1

Table 6. Cityscapes full results

Method # Params ↓
Semantic Seg. Part Seg. Saliency Surface Normal Edge

mIoU ↑ mIoU ↑ mIoU ↑ Mean ↓ Mean ↓

Single-Task 5 63.9 57.6 65.2 14.0 0.018

Shared Bottom 1 59.7 57.2 63.0 16.0 0.018

Cross-Stitch [25] 5 63.1 59.7 65.1 14.2 0.018

Sluice [32] 5 62.9 56.9 64.9 14.4 0.019

NDDR-CNN [11] 5.61 63.2 56.1 65.2 14.7 0.018

MTAN [20] 5.21 61.6 57.2 65.0 14.7 0.019

AdaShare [38] 1 63.1 59.9 64.9 14.1 0.018

LTB [12] 3.19 59.5 56.5 65.3 14.2 0.018

PHN [29] 2.51 59.7 56.7 64.6 14.0 0.018

Ours (M = 5) 1.93 63.7 59.6 65.8 14.0 0.018

Ours (M = 7) 1.91 63.9 57.5 66.3 13.8 0.018

Ours (M = 9) 2.31 63.9 59.7 66.4 13.8 0.018

Table 7. PASCAL-Context full results

Semantic Seg. Depth Prediction Surface Normal Prediction

Method
mIoU ↑ Pixel Acc ↑

Error ↓ θ, within ↑ Error ↓ δ, within ↑

Abs Rel 1.25 1.252 1.253 Mean Median 11.25◦ 22.5◦ 30◦

Ours (M = 7) 32.3 64.3 0.54 0.20 64.7 90.5 98.1 16.4 12.9 43.1 73.8 86.1

w/o flow-restriction 32.1 64.6 0.54 0.20 64.2 90.7 98.1 16.5 12.9 42.9 73.7 87.2

w/o read-in/out 31.3 64.5 0.54 0.20 64.5 90.3 98.0 16.6 13.0 42.5 73.0 86.3

w/o flow-based reduction 32.5 64.9 0.53 0.20 64.8 90.7 98.3 16.4 12.9 43.1 73.8 86.3

w/o Lsq 32.1 64.6 0.54 0.20 64.7 90.5 98.1 16.5 13.0 42.5 73.6 87.0

Table 8. Ablation Studies in NYU-v2
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