
Local-guided Global: Paired Similarity Representation
for Visual Reinforcement Learning

- Supplementary material

Hyesong Choi1, Hunsang Lee2, Wonil Song3, Sangryul Jeon4, Kwanghoon Sohn3, Dongbo Min1†

1Ewha W. University 2Hyundai Motor Company 3Yonsei University 4University of Michigan

In this document, we provide more comprehensive re-
sults and detailed information not provided in the original
manuscript due to the page limit as below.

We include the following material:

1. Implementation Details
1.1 Hyperparameters on Atari Games and DMControl
Suite
1.2 Network Architecture
1.3 Environments
1.4 Details of using correspondence maps

2. Additional evaluation metric

3. Performance consistency evaluation

4. Detailed explanations
4.1 Paired Similarity Representation 4.2 Action Aware
Transform

1. Implementation Details
This section provides tables summarizing the hyperparam-

eters used for experiments on Atari Games [5] and DMCon-
trol Suite [12] and the detailed description of our network
architecture.

1.1. Hyperparameters on Atari Games and DM-
Control Suite

For the reproducibility of our work, we provide full hy-
perparameters for our experiments on Atari Games [5] in
Table 1. We follow the common practices used to set up Rain-
bow DQN [14] in existing methods [6,10] for experimenting
on Atari Games. Table 2 shows a full list of hyperparameters
for DMControl suites experiments. We utilize the similar
hyperparameters and optimizer to CURL [6].

1.2. Network Architecture

The detailed network architecture of our method is pro-
vided in Table 3. We describe the architectures of the en-
coder, correspondence estimation module and global pre-
diction module. ‘N’, ‘K’ and ‘S’ of convolution operations

Table 1. Hyperparameters used for PSRL experiments on Atari
Games

Parameter Value
Observation Size (84, 84)

Augmentation
Random shifts (±4 pixels),
Intensity (scale=0.05)

Image Gray-scale True
Update Distributional Q
Stacked Frames 4
Action Repeat 4
Reward Clipping [-1, 1]
Training Steps 100K
Evaluation Trajectories 100
Minimum Replay Size
(for sampling) 2000

Max Frames
(per episode) 108K

Support Of Q-Distribution 51 bins
Discount Factor 0.99
Optimizer Adam
Optimizer: learning rate 0.0001
Optimizer: β1 0.9
Optimizer: β2 0.999
Optimizer: ϵ 0.00015
Max Gradient Norm 10
Multi Step Return 10
Target Network: Update Period 1
Q Network: Channels 32, 64, 64
Q Network: Filter Size 8 × 8, 4 × 4, 3 × 3
Q Network: Stride (4, 4), (2, 2), (1, 1)
Q Network: Hidden Units 256
Non-Linearity ReLU
Replay Period Every 1
Updates Per Step 2
Exploration Noisy Nets
Noisy Nets Parameter 0.5
Priority Exponent 0.5
Priority Correction 0.4 → 1

represent the channel, kernel size, and stride, respectively.
‘LReLU’ and ‘BN’ indicate LeakyReLU [8] and Batch Nor-
malization [4]. We also provide input and output tensors of
each layer for better understanding.

1



Table 2. Hyperparameters used for PSRL experiments on DMCon-
trol

Parameter Value
Observation Size (84, 84)
Observation Rendering (100, 100)
Augmentation Random crop, translation
Stacked Frames 3

Action Repeat
2 (finger-spin, walker-walk),
8 (cartpole-swingup),
4 (otherwise)

Evaluation Episodes 10
Discount Factor 0.99
Optimizer Adam
(β1, β2) → (fθ, πψ , Qϕ) (0.9, 0.999)
(β1, β2) → (α) (0.5, 0.999)

Learning Rate (fθ, πψ , Qϕ)
2e− 4 (cheetah-run),
1e− 3 (otherwise)

Learning Rate (α) 1e− 4
Batch Size 64
Replay Buffer Size 100000
Initial Steps 1000
Hidden Units (MLP) 1024
Q Function EMA τ 0.01
Critic Target Update Frequency 2
Convolutional Layers 4
Number Of Filters 32
Non-Linearity ReLU
Latent Dimension 50
Initial Temperature 0.1

1.3. Environments

PSRL was implemented in Pytorch [9] with the use of
rlpyt [11] and Mujoco [13] license, and was simulated on 1
Titan RTX GPU.

1.4. Details of using correspondence maps

Use of internal correspondence: When four consecutive
frames are used in Rainbow DQN (M = 3), the external
correspondences are specified using query images ok (Ik ∼
Ik+3) and target images ok+1 (Ik+1 ∼ Ik+4) as follows:

• correspondence (zqk, ztk+1)

• correspondence (zqk+1, ztk+2)

• correspondence (zqk+2, ztk+3)

• correspondence (zqk+3, ztk+4).

The internal correspondence is computed using query
images ok as

• correspondence (zqk, zqk+3).

The external correspondences computed between con-
secutive two frames are used to transform the query repre-
sentations. The internal correspondence is also predicted
using the same self-supervised correspondence estimation
module yet with two distant frames (zqk → zqk+3). We found

Figure 1. Visualization of the dense correspondence maps learned
by PSRL: (a) The source frame, (b) the target frame, and (c) the
dence correspondence map of the task ‘Walker, Walk’ of the DM
Control Suite.

that this is often effective in dealing with the case where the
external spatial difference between two consecutive frames
is relatively small. Namely, the internal correspondence
between kth and (k + 3)th frames can be complementary
when the external correspondences are rather small and thus
correspondence learning becomes less effective.

The internal correspondence is computed with a stack
of images ok, while the external correspondences are
computed between ok and ok+1. This is why we name
two correspondence parts ‘internal’ correspondence and
‘external’ correspondence, respectively. Note that the
internal correspondence is computed only between two
distant frames (kth and (k+ 3)th frames in ok), considering
that the external correspondence is computed between two
consecutive frames as above.

Image and representation transform: The representation
we use contains spatial information. For instance, suppose
the convolutional feature map z of the size 32× 32× 64 is
generated from an input image I of the size 128× 128× 3.
The feature map can have a lower spatial resolution (by
the downsampling operator such as max-pooling or strided
convolution) and a larger channel dimension than the input
image. The 64 dimensional vector at a spatial position of
the feature map represents the information of corresponding
positions of the input image. Therefore, we can employ the
correspondence in image transform for warping the feature
map (query representations). This kind of implementation
has been commonly used in many computer vision tasks
where an image alignment is required.

Visualization of dense correspondence maps: For a bet-
ter understanding of the proposed method, the examples
of the dense correspondence maps predicted by PSRL are
represented in Figure 1.



Table 3. Detailed description of the proposed network architecture

Encoder

Layer Operations Input Output

1 Conv(N32, K8, S4) - ReLU - DropOut It∼It+M en1t∼en1t+M

2 Conv(N64, K4, S2) - ReLU - DropOut en1t∼en1t+M en2t∼en2t+M

3 Conv(N64, K3, S1) - ReLU - DropOut en2t∼en2t+M en3t∼en3t+M

Correspondence Estimation Module

Layer Operations Input Output

4 Conv(N32, K1, S1) - BN - LReLU en3t ˜en3t
5 Compute Correlation Volume en3t, en3t+k corr
6 Concatenation ˜en3t, corr conc0
5 Conv(N256, K3, S1) - BN - LReLU conc0 conv1
6 Conv(N512, K3, S1) - BN - LReLU conv1 conv2p
7 Conv(N512, K3, S1) - BN - LReLU conv2p conv2
8 Conv(N512, K3, S1) - BN - LReLU conv2 conv3p
9 Conv(N512, K3, S1) - BN - LReLU conv3p conv3

10 Conv(N2, K3, S1) conv3 correspondence3
11 Upsampling correspondence3, conv2 correspondence3up, conv2up
12 Deconv(N256, K4, S2) - LReLU conv3 conv3d
13 Concatenation conv2up, conv3d, correspondence3up conc3
14 Conv(N2, K3, S1) conc3 correspondence2
15 Upsampling correspondence2, conv1 correspondence2up, conv1up
16 Deconv(N128, K4, S2) - LReLU conc3 conc3d
17 Concatenation conv1up, conc3d, correspondence2up conc2
18 Conv(N2, K3, S1) conc2 correspondence1
19 Upsampling correspondence1, en2t correspondence1up, en2upt
20 Deconv(N130, K4, S2) - LReLU conc2 conc2d
21 Concatenation en2upt, conc2d, correspondence1up conc1
22 Conv(N2, K3, S1) conc1 correspondence0

Global Prediction Model

Layer Operations Input Output

1 Onehot Encoding (Only for Atari) ak ak
2 Concatenate Zq

k , ak conc
3 Conv(N256, K3, S1) - ReLU conc conv1t
4 Conv(N64, K3, S1) - ReLU conv1t conv2t
5 Min-Max Normalize conv2t Zp

k+1

Figure 2. Evaluation result of ‘Probability of Improvement’ pro-
posed in Agarwal et al. [1].

Figure 3. Quantitative evaluation on the DMControl Suite [12]
according to the number of the random seed: We show the mean
(bar) and standard deviation (line) of episode return on the DMCon-
trol Suite [12] after 500K time steps for each 5 random seeds and
10 random seeds to show the consistency of the proposed method
regardless of random seeds.



Figure 4. Quantitative evaluation on the 26 Atari games [5] according to the number of the random seeds: We show the mean performance
on the 26 Atari games [5] after 100K time steps for each 5 random seeds and 10 random seeds to show the consistency of the proposed
method regardless of random seeds.

2. Additional evaluation metric
In all experiments, the evaluation on Atari Games [5]

was conducted by measuring the performance with 10 or
more random seeds, following the previous studies includ-
ing SPR [10] and CURL [6]. Recently, Agarwal et al. [1]
analyzes the problems related to statistical uncertainty in the
existing evaluation method of Atari Games [5]. Accordingly,
we added the results of a more complete evaluation using
‘Probability of Improvement’ proposed in Agarwal et al. [1]

in Figure 2.

This evaluation method estimates how likely an algo-
rithm improves upon another algorithm [1]. For instance,
‘P(SimPLe>X)’ indicates the probability (written in the hori-
zontal line) that ‘SimPLe’ is better than another algorithm,
called ‘X’, which is listed in the vertical line (e.g., PSRL,
SPR,..., DER). Namely, the probability that SimPLe is better
than SPR, ‘P(SimPLe>SPR)’, has an average value of about
0.3.



In this context, in the six graphs above, the smaller the
value of PSRL, the higher the performance. Also, in the
graph of PSRL below, ‘P(PSRL > X)’, PSRL ranks the
highest as the remaining bars of algorithms are located to
the right of the bar of PSRL. From this analysis, it can be
reconfirmed that PSRL has the most superior performance
compared to the state-of-the-art methods on Atari Games [5]
as mentioned in the result of Section 4.1.

3. Performance consistency evaluation
We consider that the performance depends on the choice

of the seed, so we measure the performance by using 10
random seeds and averaging results. To prove that our per-
formance improvement is consistent and not caused by the
noise of the estimation, we observed the change in the av-
erage performance according to the number of the random
seeds. Figure 3 and 4 represent the quantitative evaluation on
the DMControl Suite [12] and Atari games [5] according to
the number of the random seed. We show result of 5 random
seeds and 10 random seeds to compare the performance. In
Figure 3, we additionally showed the standard deviation of
the performance. The bar graph represents the average of
the episode return, and the line graph represents the standard
deviation.

From Figure 3 and 4, it can be seen that our results do
not differ significantly depending on the number of random
seeds. It can be seen that our performance is significantly
higher than the SOTA performance regardless of random
seeds, and is consistent.

4. Detailed explanations
4.1. Paired Similarity Representation

Figure 5. Correspondence Aware Transform (CAT) generates the
next feature Zq,trk+1 via warping using a pixel-wise correspondence
map, while Action Aware Transform (AAT) predicts the next fea-
ture Zq,prk+1 using the current action ak. While L1 loss encodes
local information as it operates in pixel units of 3D volume, Ls
loss encodes global information as it operates after converting 3D
volume into a global vector.

The proposed method is named ‘Paired Similarity’ as it
encodes both local and global information of agent observa-
tions. First, we generate pseudo future frame in two ways:
Correspondence Aware Transform (CAT) and Action Aware
Transform (AAT). Then, we impose similarity constraints
on the target frame with the two generated future frames in

two ways: local (L1) and global (Ls) in Eq. (6), as depicted
on the Figure 5.

4.2. Action Aware Transform

An episode of RL consists of states and actions in be-
tween. When a certain state is given as an input, our two-
layer action aware transform module predicts the next state
through a corresponding action vector ak as a medium. Such
a state prediction module has been used in the field of
RL [2,3,7,10], and the proposed work leverages the concept
to learn effective representation using paired similarity.

References
[1] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro,

Aaron Courville, and Marc G Bellemare. Deep reinforcement
learning at the edge of the statistical precipice. In Thirty-Fifth
Conference on Neural Information Processing Systems, 2021.
3, 4

[2] Kurtland Chua, Roberto Calandra, Rowan McAllister, and
Sergey Levine. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. Advances in
neural information processing systems, 31, 2018. 5

[3] Chelsea Finn and Sergey Levine. Deep visual foresight for
planning robot motion. In 2017 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 2786–2793.
IEEE, 2017. 5

[4] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift. In International Conference on Machine Learning
(ICML), pages 448–456, 2015. 1

[5] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej
Osinski, Roy H Campbell, Konrad Czechowski, Dumitru
Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al.
Model-based reinforcement learning for atari. arXiv preprint
arXiv:1903.00374, 2019. 1, 4, 5

[6] Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL:
contrastive unsupervised representations for reinforcement
learning. In International Conference on Machine Learning
(ICML), pages 5639–5650, 2020. 1, 4

[7] Alex X. Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey
Levine. Stochastic latent actor-critic: Deep reinforcement
learning with a latent variable model. In Advances in Neural
Information Processing Systems (NeurIPS), 2020. 5

[8] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rec-
tifier nonlinearities improve neural network acoustic models.
In International Conference on Machine Learning (ICML),
2013. 1

[9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703, 2019. 2

[10] Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon
Hjelm, Aaron Courville, and Philip Bachman. Data-efficient
reinforcement learning with self-predictive representations.



In International Conference on Learning Representations
(ICLR), 2021. 1, 4, 5

[11] Adam Stooke and Pieter Abbeel. rlpyt: A research code base
for deep reinforcement learning in pytorch. arXiv preprint
arXiv:1909.01500, 2019. 2

[12] Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe
Li, Diego de Las Casas, David Budden, Abbas Abdolmaleki,
Josh Merel, Andrew Lefrancq, et al. Deepmind control suite.
arXiv preprint arXiv:1801.00690, 2018. 1, 3, 5

[13] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A
physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
pages 5026–5033. IEEE, 2012. 2

[14] Hado P Van Hasselt, Matteo Hessel, and John Aslanides.
When to use parametric models in reinforcement learning?
Advances in Neural Information Processing Systems, 32, 2019.
1


