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1. OpenRooms FF dataset
We created a dataset for multi-view inverse render-

ing called OpenRooms Forward Facing (Openrooms FF)
dataset. Openrooms FF is an extension of the existing
single-view inverse rendering dataset, OpenRooms [7], and
most of resources to build the dataset are provided by the
authors of OpenRooms [7], including data sources and cre-
ation tools. The materials, however, were unavailable due
to the licensing issue, so we had to purchase materials from
Adobe Stock [1] except for 200 materials that were not
found from Adobe Stock; instead, we replace them with
other similar materials. We selected 23,618 images from
the OpenRooms dataset by filtering out the images in which
the camera looks at a wall or window, lacks textures in the
scene, or object is too close to the camera. Then, we ren-
dered forward facing multi-view images of 3 × 3 arrays by
moving camera in eight directions: up, right up, right, right
down, down, left down, and left, left up using the OptiX-
based renderer [6]. The baseline was set proportionally to
the average depth of the scene to observe the change in the
specular radiance. See Fig. 1 for a multi-view images sam-
ple. As a result, a total of 212,562 (9 × 23,618) images were
created and 27,000 (9 × 3000) images were separated into
test dataset. OpenRooms FF consists of HDR RGB images,
diffuse albedo images, roughness images, normal maps, bi-
nary masks, depth maps, per-pixel environment maps. We
rendered images at 640 × 480 resolution but resized to 320
× 240 with bilinear interpolation for the training/test. The
OpenRooms FF is summarized in Tab. 1.

2. Direct Lighting Details
Since the intensity(ηs) of incident direct lighting is the

intensity of the light source, it is unrelated to pixel location.
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Figure 1. Sample of forward facing multi-view images in Open-
Rooms FF.

Dataset Training / Test
HDR RGB 640 × 480 320 × 240
Diffuse Albedo 640 × 480 320 × 240
Roughness 640 × 480 320 × 240
Normal 640 × 480 320 × 240
Mask 640 × 480 320 × 240
Depth 640 × 480 Not used
per-pixel DL 40 × 30 × 32 × 16 40 × 30 × 16 × 8
per-pixel SVL 160 × 120 × 32 × 16 160 × 120 × 16 × 8

Table 1. Data type and resolution of OpenRooms FF. Spatially-
varying lighting (SVL) has a spatial resolution of 160 × 120 and
an angular resolution of 32 × 16.

Thus we use global intensities ηs rather than per-pixel in-
tensities. Instead, per-pixel visibility µs ∈ R was used to
account for occlusion. To enhance the dynamic range of
the SG lobes, we use the non-linear transformation [5]. The
ablation study results for SD in SVSGs of incident direct
lighting are shown in Tab. 2. Please see Eq. (7) for Lreg.
Direct lighting performance improved as SD increased, but
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GPU Memory also increased. We chose SD = 3 consid-
ering its performance and GPU usage. Fig. 2 shows the
incident(SVSGs) / exitant(ṼDL) direct lighting estimation
results. SVSGs generally performed better because ṼDL es-
timates 3D volume, while SVSGs directly estimates 2D per-
pixel environment map(E). Also, even though the consis-
tency between them is not considered, since they are trained
with the same ground truth(GT), they are consistent enough
as shown in the Fig. 2.

SD si-MSE Lreg GPU Memory(GB).
1 0.106 0.136 10.8
2 0.103 0.127 11.26
3 0.101 0.092 12.72
4 0.101 0.081 13.43
6 0.100 0.061 14.94

Table 2. The ablation study results for SD in SVSGs.

3. Analysis of Lighting Estimation Results

We have analyzed spatially-varying lighting quality in
detail. Since the SVLNet implementation is quite memory-
hungry, the resolution of our ṼSVL is 1283, which is low
compared to the image resolution (320 × 240 ). Also, be-
cause the field-of-view of our camera setup is limited, the
lighting of the out-of-view area must rely on context infer-
ence about the dataset. Fig. 3 shows the per-pixel lighting
estimation results for the OpenRooms FF test scene. In the
Fig. 3, our estimation approximates the overall outline of
the GT better than Li et al. [5] , but fails to mimic the high
frequency details of the GT due to limitations in resolution
and field-of-view.

4. View Synthesis

While image-based rendering(IBR) can perform view in-
terpolation excellently, the view-dependent effect of highly
specular objects, such as chrome spheres, is difficult to re-
produce using IBR. Physically-based rendering(PBR) can
handle this view-dependent effect realistically, but PBR re-
quires scene material, geometry, and spatially-varying light-
ing that is difficult to obtain in the real-world. Because
MAIR can perform accurate inverse rendering in real-world
scenes, and can be easily applied to existing view synthe-
sis methods with multi-view images, we can take advantage
of IBR and PBR. The view synthesis result of the scene
with chrome sphere inserted is in the accompanied video.
This application consists of two steps: (1) background ren-
dering with NeRF [10], and (2) object and mask rendering
with our renderer. We render the shadow of an object in
all images and we train NeRF with these images. Back-
ground including shadow in novel view is rendered with
NeRF, and chrome sphere in novel view is rendered with

our lighting and renderer. Among the variants of NeRF, we
use DirectVoxGO [12] for fast training.

5. Implementation details
Training and architecture details. Our experiments were
conducted with 8 NVIDIA RTX A5000 (24GB). In train-
ing, we use Adam optimizer, and the binary mask image
(Mo,Ml). Mo ∈ RH×W is mask on pixels of valid materi-
als, and Ml ∈ RH×W is mask on pixels of valid materials
and area lighting. The binary mask image is included in the
OpenRooms FF and is used only for training. First, we de-
fine masked L1 angular error function (g1), masked MSE
function (g2), masked scale invariant MSE function (g3),
masked scale invariant log space MSE function (g4), and
regularization function (g5) as follows.

g1(A,B,M) = ||(cos−1(A⊙B))⊗M ||1, (1)

g2(A,B,M) = ||(A−B)⊗M ||22, (2)

g3(A,B,M) = ||(A− τB)⊗M ||22, (3)

g4(A,B,M) = ||(log(A+ 1)− log(τB + 1))⊗M)||22, (4)

g5(A) = −A log(A), (5)

where ⊙ is element-wise dot product, ⊗ is element-wise
multiplication, and τ is the scale obtained by least square
regression between A and B.

In stage 1, the loss function of NormalNet is as follows:

Lnormal = β1g1(N, Ñ,Ml) + β2g2(N, Ñ,Ml). (6)

NormalNet has a U-Net [8] structure with 6 down-up con-
volution blocks.

Since the light source is not transparent, we use a reg-
ularization g5 so that the visibility µs of InDLNet and the
opacity α of ExDLNet can be 0 or 1. the loss function of
InDLNet and ExDLNet is as follows:

LInDL = β1g4(EDL, ẼDL,Mo) + β2g5(µs), (7)

LExDL = β1g4(EDL, ẼDL,Mo) + β2g5(α), (8)

where EDL is the per-pixel direct lighting environment
map. InDLNet also has a U-Net structure that encoder is
shared, and decoders are separated by λs, ξs, µs. The light
source intensity ηs was decoded using MLP. ExDLNet fol-
lows structure of OccNet [9] and uses MLP with conditional
batch normalization (CBN) [3]. All convolution blocks use
batch normalization(BN).

In stage2, the loss function is as follows.

LBRDF = β1g3(A, Ã,Mo) + β2g2(R, R̃,Mo). (9)

ContextNet uses U-Net with ResNet18 [4], SpecNet uses
MLP with 3 layers, MVANet uses layer normalization (LN),
and RefineNet uses U-Net with group normalization(GN).
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Figure 2. Direct lighting environment map (16× 8× 3) estimation results for OpenRooms FF.
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Figure 3. Per-pixel environment map (32× 16× 3) estimation results for OpenRooms FF.

In stage3, the loss function is as follows.

LSVL = β1g4(ESV L, ẼSV L,Mo) + β2g5(α)

+ β3

K∑
k=1

||wk(I
k − τdiff Ĩdiff − τspecĨ

k
spec)⊗Mo||22, (10)

where ESV L is the per-pixel lighting environment map,
τdiff and τspec are the scale obtained by least square regres-
sion with target image. Ik, Ĩdiff , Ĩ

k
spec are k-view image,

diffuse image, k-view specular image, respectively, and wk

is multi-view weight. In SVLNet, visible surface volume



(T) is concatenated with ṼDL after 2 downsampling and
processed with 3D U-Net. The resolution of the ṼDL is 323,
and the resolution of the T and ṼSVL is 1283. SVLNet uses
instance normalization(IN). SVLNet needs a lot of memory
when training, so we render environment map with a spa-
tial resolution of 60×80. A summary of training, number
of GPUs, hyperparameter and network architecture is pro-
vided in Tab. 3. Rendering includes the time to obtain a
60×80×8×16 environment map from VSG and the time to
re-render the input image.
Test details. Li et al. [5] and we both used an environment
map with an angular resolution of 16 × 8 during training,
but we created an environment map with 32 × 16 during
testing because our VSG was not restricted by resolution.
In training, all views are rendered for re-rendering loss, but
in testing, only the target view was rendered.

6. Additional Experimental Results
6.1. Indoor Synthetic Scenes

We provide additional inverse rendering results for
OpenRooms FF test scene in Fig. 4. Our method lever-
age multi-view and incident direct lighting to provide more
accurate material estimation results for highly specular re-
gions. (e.g. table in sample 2, chair in sample 3) Further-
more, the proposed method yields better normal estimation
results especially for more complicated structures by utiliz-
ing MVS depth. As a result, our lighting is more realistic
and we can re-render input image more accurately.

6.2. Real-World Scenes

The performance gaps between MAIR and the single-
view-based methods are more distinct in the unseen real-
world scene. Fig. 5 shows that our method robustly pro-
duces reasonable normal maps even for complex scene
structures, and this naturally affects the subsequent mate-
rial, lighting estimation. MAIR shows better material esti-
mation results for shadowed regions(e.g. table, wall in sam-
ple 2, floor in sample 3) or specular regions(e.g. drawer in
sample 4). Although there are no ground truths for materi-
als, from our experience, we know that the stones, bushes
in sample 1, and the dolls in sample 5 should show high
roughness, which are consistent with our high roughness
estimation results.

6.3. Object Insertion

Inverse rendering performance of three competing meth-
ods, lighthouse [11], Li et al. [5], and MAIR, are tested
by comparing the quality of object insertion. We imple-
mented a simple renderer for object insertion by referring to
Wang et al. [14] and used it for rendering results of MAIR
and lighthouse [11]. As the public implementation of Li et
al. [5] includes a renderer of their own, results of Li et al. [5]

were rendered using this renderer, except for the results of
the chrome sphere insertion; the renderer from Li et al. [5]
does not support the chrome sphere rendering directly, so
we used our renderer for this case. It should be also noted
that all results of lighthouse [11] were produced by using
our scene geometries because scene geometry results from
lighthouse [11] were not accurate enough to render.

We conducted a user study to evaluate the quality of ob-
ject insertion from the three methods. Given a background
image and an object of a particular material, users selected
the most natural image among the three different results in
a random order. 100 users evaluated 25 different scenes.
Fig. 6, 7, 8, 9, and 10 show all the scenes used in our user
study. Our 3D lighting not only clearly expresses HDR
lighting, but also fully reflects real-world scene geometry
and material. This allowed the object to be realistically in-
serted into the scene, acquiring the highest score among the
competing methods.

We also provide additional object insertion results. In
the accompanied video, the object can be located not only
on the plane but also on any geometry, and the shadow of the
object realistically appears to match the scene illumination.
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Stage Network input Arch norm batch epoch β1 β2 β3 lr training / GPUs inference output(channels)
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Figure 4. Additional inverse rendering results on OpenRooms FF. Small insets are the estimations without bilateral solver (BS).



Albedo Roughness Normal Re-rendering LightingInput Image

Li
 e

t 
al

. 2
1

M
A

IR
 (

O
u

rs
)

Li
 e

t 
al

. 2
1

M
A

IR
 (

O
u

rs
)

Li
 e

t 
al

. 2
1

M
A

IR
 (

O
u

rs
)

Li
 e

t 
al

. 2
1

M
A

IR
 (

O
u

rs
)

Li
 e

t 
al

. 2
1

M
A

IR
 (

O
u

rs
)

Figure 5. Additional inverse rendering results on IBRNet dataset [13]. Small insets are the estimations without BS.
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Figure 6. Additional chrome sphere insertion results on IBRNet dataset [13]. The number under the image is the result of user study.
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Figure 7. Additional chrome sphere insertion results on IBRNet dataset [13]. The number under the image is the result of user study.
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Figure 8. Additional white sphere insertion results on OpenRooms FF. The number under the image is the result of user study.
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Figure 9. Additional virtual object [2] insertion results on IBRNet dataset [13]. The number under the image is the result of user study.
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Figure 10. Additional virtual object [2] insertion results on IBRNet dataset [13]. The number under the image is the result of user study.
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