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A. Details of Other Components in NGswin
A.1. Sequentially Reflected Window Padding

As illustrated in the middle of Fig. A, (N — 1) size of
paddings are applied at the lower-right side of uni-Gram
embedding z,,,; by sequentially reflected window padding
(seq-refl-win-pad). Based on the outermost low/right win-
dows, we use the upper/left (N — 1) rows/columns of win-
dows as padding values. Consequently, Sliding-WSA pro-
duces the forward N-Gram feature z,{g. In turn, we can
get the backward N-Gram feature zflg by simply applying
the same size of paddings on the upper-left side, as in the
right of the figure. This allows some uni-Grams to inter-
act with their padded neighbors, instead of trivial “zero”
padding values. Our seq-refl-win-pad does not require extra
Mult-Adds operations, because both zero padding and our
padding method additionally give the same number of 32-
bit float data to the input feature maps. We emphasize the
advantage of seq-refl-win-pad in Sec. C.
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Figure A. Sequentially reflected window padding. N-Gram size N
is 2. (Left) The uni-Gram embedding before padding. (Middle)
Padding for the forward N-Gram feature 2}, ¢- (Right) Padding for
the backward N-Gram feature zﬁg. As stated in Sec. 3.4, sliding-
WSA weights for bi-directional N-Gram features are shared.

A.2. Within-Stage Residual Connections

While our across-stage pooling cascading follows the
global cascading of CARN [], the elements within a stage
are residually connected [!”]. Each NSTB and a patch-
merging layer (except the third encoder stage and the de-
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Figure B. Comparison of local cascading and within-stage residual
connections. (a) In local cascading of CARN, the resiudal blocks
are densely connected. (b) In our within-stage residual connection,
NSTBs and patch-merging are residually connected.

coder stage) in the encoder and decoder stages are residu-
ally connected. As described in Fig. B, this differs from
the local cascading of CARN that employed dense connec-
tions [/]. Note that we did not specifically state the input
to the decoder in the main content. zﬁ;cl in the figure is the

input to k-th (1<k<K4..) NSTB in the decoder stage. The

corresponding mapping function F¥ _ is formulated as:

Z(’;EC = ‘F(]jec(zge_cl)’ le;e(/’ e RHWXD’
where zgec equals zscqp + z(’fnlcl from SCDP bottleneck and
the last NSTB in the first encoder stage (Sec. 3.5). Also,

Zdee = LayerNorm(zi”é“) € REWXD,

A.3. Reconstruction Module

The only difference between the x2, x 3, and x4 models
is the reconstruction module. As depicted in Fig. C, we vary
the output channels of the first convolution and the scale
factor of the pixel-shuffler. The last convolutional layer is
the difference from other methods [, | 5, 20, 7 1], as previ-
ously mentioned in Sec. 3.3. The input to this module is
Zs + z4ec With global skip-connection as stated in the main
content (z, results from the shallow module).



[ Decoder ] [ Decoder ] [ Decoder ]
Conv Conv Conv
(D> 22x 3) (D> 32x3) (D> 42x3)
Pixel Shuffle (2) Pixel Shuffle (3) Pixel Shuffle (4)
(22x 3 - 3) (32x 3 > 3) (42x 3 > 3)
Conv Conv Conv
(3>3) (3>3) (3->3)

€ R3X2Hx2W € R3X3HX3W € R3X4HxaW

ISR ISR
X2 task X3 task X4 task

Isg

Figure C. Comparison of the reconstruction modules for different
SR tasks. A parenthesis (¢ — b) indicates change of channels
(network dimension) from a to b. The other parenthesis (r) in
Pixel Shuffle block indicates a scale factor (e.g., x4).

B. Experimental Setup Details and Findings

In this section, we explain experimental settings and
our findings from the results of various learning strategies.
Since there are not an abundance of studies primarily fo-
cusing on training strategy itself for SR, we hope future re-
searchers are able to gain insight from our findings. We
summarize our findings in Tab. A. Although our findings
in this section are not absolute truths, they can be helpful
considerations for future research.

Model Architecture. The number of NSTBs in the encoder
and decoder, {K1, K2, K3, Kgec}, is set to {6,4,4,6}. The
number of WSA heads (for sliding-WSA and Swin Trans-
former’s WSA) in each stage equals {1, Ko, K3, Kec}-
We set the network dimension (channel) D, hidden di-
mension of FEN (feed-forward network) after Swin Trans-
former’s WSA, window size M, and N-Gram size N to 64,
128, 8, and 2, respectively. The shift size is 4, i.e. L%J
same as in Swin V1 and V2 [24, 25]. The activation func-
tions in FFN and after depth-wise convolution of SCDP bot-
tleneck are GELU non-linearity. Also, we use LeakyReLU
non-linearity after the iterative max-poolings of the pixel-
shuffle [ ] step in the bottleneck. For the other components
not mentioned, there are no activation functions.

Training Details. We implemented the model configura-
tions, training pipeline, and evaluation procedure by Py-
Torch [70] on 4 NVIDIA TITAN Xp GPUs. The batch
size and training epochs were 64 and 500. We used
Adam [ ©] optimizer with {31, B2, €} = {0.9,0.999, 108}
for training from scratch (x2 task) and warm-start be-
fore whole fine-tuning (x3, x4 tasks). For whole fine-
tuning phase, AdamW [’7/] was utilized with the same
hyper-parameters above. The learning rate (Ir) was ini-
tialized as 0.0004 and decayed by half (half-decay) after
{200, 300,400, 425, 450, 475} epochs. At the start of the
training, we placed 20 warmup epochs [ (] that linearly in-
creased Ir from 0.0 to initialized Ir (10™%).

Warm-Start. We trained NGswin and SwinIR-NG from

Table A. Summary of learning strategies we find performed better
with NGswin. Our findings are not absolute truths but just sugges-
tions for the future works.

Method Better Worse
X3, x4 training  warm-start ['’]  scratch
" stdin normalization ~fromdata [ 1] ~ 1.0 [20,71]
de-normalization position  before loss [ /] after loss
7777777777 Irdecay half[’1] ~ cosine [ 0]
77777 weightdecay [/] no ~ yes
gradient clipping [*©,77] no yes
layer-wise Ir decay [/] no yes
77777777 dropout[15] no " yes
drop-path [(“] no yes

scratch (x2) and by warm-start (x3, x4) [’”], as men-
tioned in Sec. 4.1. The warm-start scheme lasts for 300
epochs. This strategy, therefore, needed short training
times. Warm-start was processed as follows: Loading the
pre-trained weight on x2, we froze all layers except the re-
construction module, and trained this module for 50 epochs
(warm-start epoch). In this phase, Ir was kept as a con-
stant (i.e., 0.0004). After that, the whole parameters of
the network were fine-tuned by back-propagation (whole
fine-tuning) for 250 epochs. We placed 10 warmup epochs
at the start of whole fine-tuning. In whole fine-tuning, Ir
was halved after {50, 100, 150, 175, 200, 225} epochs. We
compared SwinIR-NG trained by warm-start scheme to the
scratch one in Tab. Bc to show the merits of this strategy.
Dataset. We never used any extra datasets other than 800
images from DIV2K [!]. Each data point in the training
dataset was repeated 80 times in an epoch to maximize the
merits of random-cropping (64 x64), following ELAN [20].
The random horizontal flip and rotation of 90°, 180°, 270°
augmented the training data. We converted all images in-
cluding the test data to “.npy” (numpy) files with the uint8
data type, for faster loading and efficient memory usage.
Normalization. We normalized the training data using the
means and standard-deviations (std) of 800 LR images on
RGB channels matching each task. Expressly, it was the
same as standardization. The outputs of the reconstruction
module were de-normalized (inverse of normalization), and
used for calculating Ly pixel-loss. Although we trained the
models with different normalization strategies such as 1.0
std and not de-normalizing before computing loss, those
strategies fell behind the default strategy. On the other hand,
SwinIR-NG was trained with 1.0 std, following SwinIR pa-
per [20].

Learning Rate Decay. We observed that cosine learning
rate decay (cosine-decay) [*0] did not perform well on SR
tasks. It was because the underfitting (not overfitting) is a
crucial issue to SR [7”]. Interestingly, it differs from the
high-level vision tasks such as classification, object detec-
tion, and semantic segmentation. We hypothesize that the
cosine-decay reduces the Ir faster than the half-decay (keep-



Table B. Other ablation studies.

(a) Ablation study on Swin Transformer version.

Swin ver. || Scale | Mult-Adds | #Params SetS Setl4 BSD100 Urban100 Mangal09
Vi %2 14041G 998,176 | 37.99/0.9606 | 33.71/0.9192 | 32.20/0.9000 | 32.28/0.9301 | 38.69/0.9770
\% . 998,384 | 38.05/0.9610 | 33.79/0.9199 | 32.27/0.9008 | 32.53/0.9324 | 38.97/0.9777
Vi <3 66.56G 1,006,831 | 34.42/0.9273 | 30.44/0.8445 | 29.13/0.8066 | 28.35/0.8569 | 33.66/0.9456
\% ) 1,007,039 | 34.52/0.9282 | 30.53/0.8456 | 29.19/0.8078 | 28.52/0.8603 | 33.89/0.9470
Vi 4 36.44G 1,018,948 | 32.20/0.8946 | 28.69/0.7836 | 27.61/0.7380 | 26.26/0.7916 | 30.53/0.9090
V2 i 1,019,156 | 32.33/0.8963 | 28.78/0.7859 | 27.66/0.7396 | 26.45/0.7963 | 30.80/0.9128

(b) Ablation study on padding method. The comparative model is NGswin.

Method Scale Set5 Setl4 BSD100 Urban100 Mangal09
zero-pad %2 37.82/0.9599 | 33.38/0.9160 | 32.06/0.8983 | 31.58/0.9231 | 38.10/0.9759
seq-refl-win-pad 38.05/0.9610 | 33.79/0.9199 | 32.27/0.9008 | 32.53/0.9324 | 38.97/0.9777
zero-pad <3 34.14/0.9249 | 30.22/0.8400 | 28.99/0.8030 | 27.74/0.8439 | 33.01/0.9410
seq-refl-win-pad 34.52/0.9282 | 30.53/0.8456 | 29.19/0.8078 | 28.52/0.8603 | 33.89/0.9470
zero-pad 4 31.90/0.8906 | 28.45/0.7782 | 27.47/0.7332 | 25.72/0.7740 | 29.89/0.9016
seq-refl-win-pad 32.33/0.8963 | 28.78/0.7859 | 27.66/0.7396 | 26.45/0.7963 | 30.80/0.9128

(c) Ablation study on warm-start. The comparative model is SwinIR-NG.

Method Scale Set5 Set14 BSD100 Urban100 Mangal09

scratch <3 34.65/0.9291 | 30.59/0.8471 | 29.23/0.8090 | 28.71/0.8636 | 34.17/0.9485
warm-start 34.64/0.9293 | 30.58/0.8471 | 29.24/0.8090 | 28.75/0.8639 | 34.22/0.9488

scratch W 32.45/0.8979 | 28.80/0.7867 | 27.71/0.7413 | 26.51/0.7992 | 31.02/0.9158
warm-start 32.44/0.8980 | 28.83/0.7870 | 27.73/0.7418 | 26.61/0.8010 | 31.09 / 0.9161

ing a constant for long phases) and leads to the underfitting.
However, we also observed that a decay point that was too
early or too late ended up with the wrong converging point
and decreased performances.

Regularization. We found that the SR tasks were hampered
by the regularization strategies, such as weight decay [~ /],
gradient clipping [~¢, 79], and layer-wise Ir decay [/]. We
compared a non-regularization strategy with the methods
with 0.05 weight decay or 5.0 gradient clipping. However,
these strategies dropped the performance. Similarly, while
layer-wise Ir decay improved the performance of high-level
vision tasks when fine-tuning Transformer models [, | ],
our models could not learn the representations well with that
regularization. This is also because SR tasks suffer from un-
derfitting unlike recognition tasks.

Dropout. Considering that the crucial issue of SR tasks is
underfitting, the dropout also had a negative effect on our
work. Although we utilized the different dropout [! *] and
drop-path [ V] rates, they were not good for NGswin. How-
ever, a recent work [! /] has demonstrated the appropriate
dropout strategy could improve SR performance.

C. Other Ablation Studies

Swin Transformer Version. Tab. Ba demonstrates the su-
periority of SwinV2 over SwinV1 for SR tasks of NGswin.
As mentioned in [’4], it is because dot-product self-
attention of SwinV1 tends to make a few pixel pairs dom-
inate the trained attention maps. But SR tasks need not
some certain but neighbor pixels to recover degraded re-
gions and reconstruct HR images. Since normalization is
inherent in the cosine similarity of SwinV2, scaled-cosine
self-attention can hinder some certain pixels from hugely
affecting reconstruction tasks.

Padding. We investigated the impacts of seq-refl-win-pad
in Tab. Bb. The trivial zero-padding (zero-pad) often con-
veys meaningless values to the feature maps, which causes
several degraded regions to interact with empty pixels. It
was a severely adverse method for uni-Gram embedding
that had significantly low resolution (8x8, 4x4, 2x2).
However, seq-refl-win-pad could give non-zero neighbors
—some neighbors from other directions, to be precise—
to the uni-Grams that were insufficient to neighbors. As
a result, the networks could learn more meaningful repre-
sentations, compared to zero-pad. Even the zero-pad ap-
proach was worse than the model without the N-Gram con-
text. Mult-Adds operations and the number of parameters
of the models were unchanged.

Warm-Start. It is obvious that the warm-start strategy re-
quires much shorter training time than training from scratch
(scratch). As explained in Sec. B, the scratch and warm-
start scheme lasted for 500 and 300 epochs. Meanwhile, the
50 warm-start epochs that only updated the reconstruction
module spent fractional times. Therefore, the warm-start
scheme was about twice faster than scratch. However, we
wondered if this scheme would also be better when it comes
to SR performances as in RCAN-it [ ”]. Tab. Bc shows that
SwinIR-NG trained by warm-start scheme recorded higher
scores than scratch. Therefore, the warm-start training strat-
egy is superior to scratch in terms of both time resource and
performances for SR tasks.

Other Benchmarks. Due to the page limit in the main con-
tent, we did not report the results of ablation studies on
some SR benchmark test datasets. In Tab. C, we posted
those results including benchmarks already shown in Sec.
4.3. The results consistently showed the positive effect of
each proposed (or employed) approach.
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Figure D. Trade-off between performance and efficiency. The parameter sizes of NGswin and SwinIR-NG are 4.04MB and 4.74MB.

D. More Visual Comparisons

We supply more visual comparisons with other models
in Figs. E, F, G and H. Also, more comparisons of the
models with vs. without the N-Gram context are visualized
in Figs. I and J.

E. Discussions and Limitations

In this section, we discuss the characteristics of our novel
methods including the novelty and limitations. Moreover,
we reflect on other tasks that are not addressed in this pa-
per but can be developed by our N-Gram context. Finally,
it is considered how this work can be extended to further
improve our methods and cover broader tasks.

Methods. Fig. D illustrates the trade-off between perfor-
mance and efficiency of our models and the best lightweight
SR methods. NGswin has the fewest Mult-Adds operations
and SwinIR-NG presents the best performance.

[NGswin] As shown in Sec. 3.5 and Tab. 6, our proposed
SCDP bottleneck compensated the performance loss of the
hierarchical encoder. However, one may doubt whether
NGswin can be improved by abandoning the hierarchical ar-
chitecture, as in ELAN-light and SwinIR-light. Of course,
the non-hierarchical structure would significantly lead to
performance gains. However, the following approximation
shows the influence of training input resolution hw of a sin-
gle NSTB on Mult-Adds of xr task:

MultAdds(NSTB) & (10 x hw/2'?/(5)*)G.
Therefore, if there were no patch-merging layers, the eight
NSTBs in the 2nd and 3rd encoder stages would have in-
creased the operations by about 17G for the x4 task.
[SwinIR-NG] Compared with SwinIR-light (w/o N-Gram),
SwinIR-NG (w/ N-Gram) needs a small number of extra
operations to establish state-of-the-art lightweight SR. The
parameters were also kept as a tolerable size (4.74MB) for
semiconductor system, as stated in Sec. 1. However, it is
a limitation that SwinIR-NG requires more parameters and
operations than ELAN-light [$0]. These results are due to
our intention of focusing on improved performance.
[N-Gram Context] Our N-Gram context differs from re-
cent attention mechanisms proposed for the efficient self-
attention (SA). First, while our sliding-WSA produces the
average correlations in the spatial space, channel attention

(CA) [7] computed SA in the channel space, which was
employed in Restormer [/] and NAFNet [0]. Second,
group-wise multi-scale self-attention (GMSA) proposed by
ELAN-light [*0] divided the feature maps into K groups
to avoid intensive operations. In contrast, the dimension-
ality reduction of our channel-reducing group convolution
(uni-Gram embedding) decreases the time complexity of
sliding-WSA. Third, cross-shaped window (CSWin) ["] en-
larged the receptive field of SA by splitting multi-heads hor-
izontally and vertically, then computed SA in each multi-
head group. Recently, Cross Aggregation Transformer
(CAT) [ %] adopted the similar SA strategy for multiple im-
age restoration tasks with a large model size. Whereas, we
calculate SA within N2 uni-Gram embeddings. The weight
sharing for the bi-directional N-Gram features also broad-
ens the receptive field. As a result, the receptive field of
sliding-WSA is expanded 2N ? times. Lastly, the parameters
of the N-Gram context can be further reduced by properly
adopting and varying other methods.

[SwinV2] Most recently, Swin2SR [“] adapted SwinV2 like
NGswin. Unlike our model, Swin2SR employed a con-
tinuous relative position bias [7]. It is compelling that
Swin2SR demonstrated a potential that SwinIR-NG could
be improved by SwinV2, as in our Tab. Ba. However,
Swin2SR was trained with 3,450 images from a merged
dataset of DIV2K and Flickr2K [ ], which were even more
than our 800 training images. Likewise, the Swin2SR pa-
per only reported the results of the x2 lightweight SR task.
Therefore, despite its remarkable performance, we excluded
Swin2SR from Tab. 3 for fair comparison.

Other Tasks. In this paper, we worked on the super-
resolution of the bicubic LR images. Recently, some re-
searchers studied the blind SR [”?], where the input LR
images are from unknown degradation. In addition, other
low-level vision tasks, such as deblurring, denoising, de-
raining, and JPEG artifact reduction, were developed by at-
tention mechanisms [, *°—35]. Since these image restora-
tion tasks also need the contextual information of distorted
regions like the bicubic SR, our model introducing N-Gram
to image would be helpful. Secondarily, we visualized how
our work can boost high-level vision tasks, such as classi-
fication (CIFAR10 [!©]) and ST-VQA (Scene Text Visual
Question Answering) [*'] in Figs. K, L and M.



Table C. The results of ablation studies on entire benchmarks. The tables in the parenthesis are the corresponding ones of Sec. 4.3. The
results in bold are the best of each comparative content. PSNR / SSIM are reported.

(a) N-Gram context (Tab. 4).

NGswin without

vs. with N-Gram

N-Gram Scale | Mult-Adds | #Params Set5 Setl4 BSD100 Urban100 Mangal09
w/o %2 138.20G 750K | 38.05/0.9609 | 33.70/0.9194 | 32.25/0.9006 | 32.39/0.9304 | 38.86/0.9775
w/ 140.41G 998K | 38.05/0.9610 | 33.79/0.9199 | 32.27/0.9008 | 32.53/0.9324 | 38.97/0.9777
w/o <3 65.53G 759K | 34.53/0.9281 | 30.48/0.8451 | 29.15/0.8073 | 28.37/0.8573 | 33.81/0.9464
w/ 66.56G 1,007K | 34.52/0.9282 | 30.53/0.8456 | 29.19/0.8078 | 28.52/0.8603 | 33.89/0.9470
w/o 35.89G 771K | 32.34/0.8963 | 28.70/0.7844 | 27.63/0.7390 | 26.25/0.7918 | 30.70/0.9123
w/o (channel up) 4 53.71G 1,189K | 32.37/0.8973 | 28.75/0.7854 | 27.65/0.7396 | 26.28 /0.7927 | 30.73/0.9129
w/o (depth up) 47.88G 1,061K | 32.40/0.8967 | 28.75/0.7853 | 27.66/0.7398 | 26.37/0.7946 | 30.78 /0.9133
w/ 36.44G 1,019K | 32.33/0.8963 | 28.78/0.7859 | 27.66 /0.7396 | 26.45/0.7963 | 30.80/0.9128

HNCT vs. HNCT-NG

N-Gram Scale | Mult-Adds | #Params Set5 Setl4 BSD100 Urban100 Mangal09
w/o %2 82.39G 357K | 38.08/0.9608 | 33.65/0.9182 | 32.22/0.9001 | 32.22/0.9294 | 38.87/0.9774
w/ 83.19G 424K | 38.10/0.9610 | 33.64/0.9195 | 32.25/0.9006 | 32.35/0.9306 | 38.94/0.9774
w/o . 37.78G 363K | 34.47/0.9275 | 30.44/0.8439 | 29.15/0.8067 | 28.28/0.8557 | 33.81/0.9459
w/ x3 38.14G 431K | 34.48/0.9280 | 30.48/0.8450 | 29.16/0.8074 | 28.38/0.8573 | 33.81/0.9464
w/o 4 22.01G 373K | 32.31/0.8957 | 28.71/0.7834 | 27.63/0.7381 | 26.20/0.7896 | 30.70/0.9112
w/ 22.21G 440K | 32.32/0.8960 | 28.72/0.7846 | 27.65/0.7391 | 26.23/0.7912 | 30.71/0.9114

(b) N-Gram directions and interaction (Tab. 5). The second best results are in underline.

Direction || Type | Mult-Adds | #Params Set5 Set14 BSD100 Urban100 Mangal09
1 WSA 152.41G 1,238,056 | 38.05/0.9610 | 33.78/0.9198 | 32.26/0.9006 | 32.54/0.9322 | 38.90/0.9777
4 WSA 139.56G 935,272 | 38.07/0.9609 | 33.76/0.9197 | 32.25/0.9007 | 32.52/0.9317 | 38.92/0.9776
1 CNN 139.80G | 1,327,528 | 38.04/0.9610 | 33.77/0.9197 | 32.25/0.9005 | 32.45/0.9316 | 38.86/0.9775
2 CNN 139.38G 998,568 | 38.04/0.9610 | 33.83/0.9203 | 32.26/0.9007 | 32.54/0.9321 | 38.90/0.9776
4 CNN 139.17G 936,488 | 38.02/0.9609 | 33.77/0.9178 | 32.26/0.9006 | 32.52/0.9320 | 38.93/0.9777
2 WSA 140.41G 998,384 | 38.05/0.9610 | 33.79/0.9199 | 32.27/0.9008 | 32.53/0.9324 | 38.97/0.9777

(c) Extra stages and SCDP bottleneck (Tab. 6).

Stages || SCDP || Scale | Mult-Adds | #Params Set5 Setl4 BSD100 Urban100 Mangal09
extra w/o 87.98G 997K | 38.02/0.9607 | 33.71/0.9193 | 32.20/0.8999 | 32.28/0.9298 | 38.72/0.9773
default w/o x2 138.88G 992K | 38.08/0.9609 | 33.81/0.9199 | 32.24/0.9005 | 32.48/0.9321 | 38.92/0.9776
default w/ 140.41G 998K | 38.05/0.9610 | 33.79/0.9199 | 32.27/0.9008 | 32.53/0.9324 | 38.97/0.9777
extra w/o 42.10G 1,006K | 34.38/0.9272 | 30.43/0.8437 | 29.11/0.8060 | 28.33/0.8562 | 33.67/0.9453
default w/o x3 65.85G 1,001K | 34.47/0.9277 | 30.49/0.8454 | 29.17/0.8073 | 28.47/0.8596 | 33.81/0.9464
default w/ 66.56G 1,007K | 34.52/0.9282 | 30.53/0.8456 | 29.19/0.8078 | 28.52/0.8603 | 33.89/0.9470
extra w/o 23.33G 1,018K | 32.17/0.8943 | 28.65/0.7827 | 27.59/0.7369 | 26.22/0.7900 | 30.46/0.9090
default w/o x4 36.06G 1,013K | 32.29/0.8957 | 28.73/0.7849 | 27.64/0.7391 | 26.38/0.7954 | 30.71/0.9121
default w/ 36.44G 1,019K | 32.33/0.8963 | 28.78/0.7859 | 27.66/0.7396 | 26.45/0.7963 | 30.80/0.9128
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Figure E. Visual comparisons (x4). “LR (bicubic)” indicates the low-resolution input images from bicubic interpolation.
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Figure F. Visual comparisons (x4). “LR (bicubic)” indicates the low-resolution input images from bicubic interpolation.
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Figure G. Visual comparisons (x3). “LR (bicubic)” indicates the low-resolution input images from bicubic interpolation.
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Figure H. Visual comparisons (x3). “LR (bicubic)” indicates the low-resolution input images from bicubic interpolation.
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Figure 1. Visual comparisons of the models with vs. without the N-Gram context (x4). “LR (bicubic)” indicates the low-resolution input
images from bicubic interpolation.
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images from bicubic interpolation.
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Figure K. Visual results with SwinIR-NG on CIFAR10 [ “] (x4). Our technique may boost classification tasks with the sharper edges of
super-resolution results. The 1st and 3rd columns are LR (bicubic) images. The 2nd and 4th columns are from SwinIR-NG. As this figure
is secondary provision, we do not compare ours with other models.



Figure L. Visual results with SwinIR-NG on CIFAR10 [ ©] (x4). The explanations are in Fig. K.
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Figure M. SR results with SwinIR-NG on ST-VQA Test set [/] (x4). Our SwinIR-NG makes the scene text more accurate to be detected
than the original LR images. We expect our work to boost detection task as well. Like Fig. K, as this figure is secondary provision, we do
not compare ours with other models.
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