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Figure 1. Segmentation results for unseen domain images. All models are trained on the GTAV [15] train set and validated on the
Cityscapes [3] validation set. DeepLabV3+ is adopted as a baseline. Our method outperforms the baseline, RandConv [17], and
RobustNet [2] methods.

1. Reproducibility

We have provided implementation details and pseudocode
in the main paper for reproducibility. Note that all the exper-
iments have been performed eight times and averaged.

2. Domain generalizable semantic segmentation

To show the applicability of Pro-RandConv, we conducted
semantic segmentation experiments in addition to the object
recognition experiments provided in the main paper. We use
the experimental protocol used in RobustNet [2] for a fair
comparison. We adopt a DeepLabV3+ [1] architecture with
ResNet50 [8] as a baseline. We use the GTAV [15] dataset as
the training domain and measure the generalization capabil-
ity on the Cityscapes [3], BDD-100K [18], SYNTHIA [16],
and Mapillary [11] datasets. Mean Intersection over Union
(mIoU) is used to quantitatively evaluate semantic segmenta-
tion performance. We use a batch size of 8 for experiments
on a single GPU, which is different from the experimental
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protocol in [2] using a batch size of 16 for GTAV. Except for
the batch size, all environments are the same as the official
experimental protocol, refer to [2] for more details. In our
augmentation settings, we use all of the same hyperparam-
eters for object recognition without additional tuning. We
also randomly select only half of the images for each batch
and perform augmentation.

Tabel 1 shows a comparison of generalization perfor-
mance in semantic segmentation. To prove the superiority
of Pro-RandConv, we compare the performance not only
with RandConv [17] but also with RobustNet [2], a domain
generalization method for semantic segmentation. Besides
that, we compare the performance with various competitors
(e.g. Switchable Whitening (SW) [13], IBN-Net [12], and
IterNorm [9]) provided by [2]. Our method outperforms all
of the competitors including RandConv and RobustNet by a
big margin. In particular, we note that our method shows a
great performance improvement on real-world datasets (i.e.
Cityscapes, BDD-100K, and Mapillary). We also provide
experimental results with various versions to observe the
importance of each component. All components except the
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Table 1. Performance comparison of mIoU (higher is better) (%).
The models are trained on the train set of GTAV (G), and evaluated
on Cityscapes (C), BDD-100K (B), SYNTHIA (S), and Mapillary
(M) validation sets. ResNet-50 is used with an output stride of 16.
DeepLabV3+ is adopted as a baseline. * denotes reproduced results.
Ours-A is a version with only a progressive approach, Ours-B is
a version with a progressive approach and contrast diversification,
Ours-C is a version with a progressive approach, contrast diversifi-
cation, and Gaussian smoothing, and Ours-D is a version with all
components applied.

Methods C B S M Avg.
Baseline [2] 28.95 25.14 26.23 28.18 27.13
SW [13] 29.91 27.48 27.61 29.71 28.68
IterNorm [9] 31.81 32.70 27.07 33.88 31.37
IBN-Net [12] 33.85 32.30 27.90 37.75 32.95
RobustNet [2] 36.58 35.20 28.30 40.33 35.11
Baseline* 35.10 27.18 26.71 30.63 29.91
RandConv* [17] 35.38 30.92 24.45 32.43 30.80
RobustNet* [2] 39.72 35.61 26.87 39.50 35.43
Ours-A 39.53 34.14 26.30 36.74 34.18
Ours-B 41.60 34.95 26.18 41.31 36.01
Ours-C 42.36 37.03 25.52 41.63 36.64
Ours-D 40.48 36.68 26.82 40.76 36.19

deformable offset improve the generalization performance,
which can be interpreted as the geometrical change of the
object shape from the deformable offset causing a negative
effect on the pixel-level classification. We expect to get
better generalization performance if we change the ground
truth to accommodate geometric changes. Figure 1 describes
the semantic segmentation results on Cityscapes. Ours-C
version of the model with removed deformable offsets is
used for visualization.

3. Strategies for selecting images to augment
In the main paper, we provided a performance on a ba-

sic learning strategy using both original images X0 and
augmented images XL. Table 2 shows various data frac-
tion methods to effectively use augmented data for training.
RandConv [17] applied augmentation with half probability
for every mini-batch. That is, sometimes the original images
are used and at other times the augmented images are used
for training. We call this a batch-level image augmentation
strategy. We first compare these batch-level augmentation
strategies using only the original images, using only the aug-
mented images, and using both sets with half probability.
Using only original images significantly degrades out-of-
domain performance. On the other hand, using only aug-
mented images degrades in-domain performance, especially
in PACS. Therefore, it is important to properly combine the
two types of images to balance in-domain and out-of-domain
performance.

Next, we provide experiments on an instance-level aug-
mentation strategy to learn both original and augmented
images within a mini-batch. Pr(X0,XL) indicates this strat-

Table 2. Strategies for selecting training images in the single do-
main generalization setting on Digits and PACS in terms of accuracy
(%). LeNet and ResNet18 are used for training on Digits and PACS,
respectively. RC* denotes the reproduced results of RandConv. X0

and XL indicate original images and augmented images passing
through L-layers. L is sampled as L ∼ U(1, Lmax = 10) for each
mini-batch, respectively. Pr(X0,XL) means an instance-level
augmentation strategy, where r is the data fraction of the original
images. The larger r, the higher the proportion of the original
images in the mini-batch.

Methods Selection
strategies

Digits PACS
In-

domain
Out-of-
domain

In-
domain

Out-of-
domain

RC* [17] X0 or X1 98.90 74.84 92.75 67.50

Ours
(batch)

only X0 (baseline) 98.64 52.00 95.37 63.15
only XL 99.25 80.99 94.66 68.10
X0 or XL 99.25 81.08 95.59 67.65

Ours
(instance)

Pr=0.25(X0,XL) 99.28 81.20 95.18 68.43
Pr=0.50(X0,XL) 99.31 81.13 95.65 68.20
Pr=0.75(X0,XL) 99.25 80.22 95.73 67.26
Pr∼U(0,1)(X0,XL) 99.27 80.66 96.00 69.11

Ours (X0 and XL) 99.29 81.35 95.51 68.88

egy, where r is the data fraction of the original images. The
larger r, the higher the proportion of the original images in
the mini-batch. Generally, a high value of r tends to improve
in-domain performance and decrease out-of-domain perfor-
mance. The most appropriate solution is to set r to a value
of 0.5 or to sample r from U(0, 1). In particular, the random
sampling strategy achieves satisfactory values for both in-
domain performance and out-of-domain performance, and
obtains comparable performance to the basic strategy using
both original and augmented images. It is noteworthy that
RandConv degrades the in-domain performance on PACS
from 95.37% to 92.75% compared to the baseline, whereas
our method improves both in-domain and out-of-domain
performance.

4. Component analysis
Table 3 shows a detailed performance comparison for

each component of Pro-RandConv. First, we analyze
whether we can improve performance by adding our compo-
nents to the single-layer approach used in RandConv [17].
Gaussian smoothing of convolution weights does not have
a significant effect in a single-layer approach, whereas con-
trast diversification and deformable offsets help to improve
performance. However, it does not contribute to a significant
performance improvement, because of the limitation of style
diversity and the problem of excessive semantic distortion
in the single-layer approach. In addition, the method of var-
iously adjusting the variance of the Gaussian distribution
without fixing the convolution weight to He-initialization [7]
shows some performance improvement on Digits.

Second, we analyze the influence of components in detail
under our progressive approach. The key to the progressive
approach is to initialize one layer and keep the remaining



Table 3. Performance analysis for detailed components in terms
of accuracy (%). LeNet and ResNet18 are used for training on
Digits and PACS, respectively. SDG and MDG indicate single
domain generalization and multi domain generalization settings,
respectively. Single denotes the single-layer approach used by
RandConv. Multi (D/S) represents our progressive approach, where
D means to initialize all layers differently, and S means to initialize
one layer and use it equally for all layers.

Model Conv.
smooth

Contrast Offsets Digits PACS
SDG SDG MDG

Baseline - - - 52.00 63.13 81.45

Single

- - - 74.84 67.50 82.43
✓ - - 74.34 67.95 82.53
- ✓ - 77.14 67.81 83.16
- - ✓ 75.73 67.24 82.38

w ∼ N(0, σw), σw ∼ U(ϵ, 1) 76.59 67.46 82.53
w ∼ N(0, σw), σw ∼ U(ϵ, 2) 75.80 67.99 82.50

Multi (D) - - - 74.72 66.47 82.49

Multi (S)

- - - 78.26 67.89 83.72
- ✓ - 77.09 68.73 84.17
- - ✓ 77.41 68.25 84.04
- ✓ ✓ 77.08 69.01 84.24
✓ - - 80.03 68.3 83.79
✓ ✓ - 80.02 68.55 84.22
✓ - ✓ 81.06 67.98 83.77
✓ ✓ ✓ 81.35 68.88 84.29

layers with the same parameters, which leads to a signif-
icant performance improvement. Next, we compare the
performance with and without Gaussian smoothing of the
convolution layer. In Digits, since the size of the object is
relatively small, the multi-layer structure of the 3× 3 con-
volution layer has excessive diversity. Thus, increasing the
contrast and texture diversity without Gaussian smoothing
has the effect of inducing semantic distortion. In other words,
it is more effective to secure the contrast and texture diver-
sity while controlling the deformation scale of texture with
Gaussian smoothing. Conversely, in PACS, since the reso-
lution of the image is large, the multi-layer structure of the
3× 3 convolution layer is inefficient in diversity. Therefore,
even if Gaussian smoothing is not applied, the generalization
capability can be improved by contrast diversification and
deformable offsets.

5. Additional performance analysis
5.1. Comparison with traditional augmentation

In this section, we compare the traditional augmenta-
tion methods with our Pro-RandConv. Table 4 and Table 5
provide performance comparisons on Digits and PACS, re-
spectively. In both datasets, color jitter and grayscale are
more effective than perspective and rotate in terms of im-
proving generalization ability. Also, AutoAugment [4] and
RandAugment [5], which apply various augmentation types
simultaneously, enhance domain generalization capability
more than single augmentation methods. Furthermore, the
proposed Pro-RandConv outperforms all these augmentation

Table 4. Performance comparison with traditional augmentation
techniques in the single domain generalization setting on Digits
in terms of accuracy (%). Each column title indicates the target
domain. LeNet is used for training. * denotes reproduced results.

Methods SVHN MNIST-M SYN USPS Avg.
Baseline 32.52 54.92 42.34 78.21 52.00
Color jitter* 36.04 57.56 43.94 77.76 53.83
Grayscale* 32.92 55.44 42.38 78.22 52.24
Pespective* 33.63 43.86 40.92 69.12 46.88
Rotate* 31.99 54.86 38.22 69.54 48.65
AutoAugment [4] 45.23 60.53 64.52 80.62 62.72
RandAugment [5] 54.77 74.05 59.60 77.33 66.44
Ours 69.67 82.30 79.77 93.67 81.35

Table 5. Performance comparison with traditional augmentation
techniques in the single domain generalization setting on PACS
in terms of accuracy (%). Each column title indicates the source
domain. ResNet18 is used for training. * denotes reproduced
results.

Methods Art Cartoon Photo Sketch Avg.
Baseline 74.64 73.36 56.31 48.27 63.15
Color jitter* 75.94 76.56 59.27 50.24 65.50
Grayscale* 74.29 75.75 58.96 47.67 64.17
Pespective* 72.29 70.17 59.99 43.79 61.31
Rotate* 73.47 71.06 56.95 46.61 62.02
AutoAugment* [4] 76.48 77.09 60.99 52.46 66.76
RandAugment* [5] 76.76 78.00 62.09 56.40 68.31
Ours 76.98 78.54 62.89 57.11 68.88

Table 6. Performance comparison on Digits in detail for a fair
comparison (%). In MNIST-M, two different kinds of sets (A/B)
are utilized. LeNet is used for training. Ours−T and Ours−C

indicate disabling texture diversification and contrast diversification,
respectively. RC denotes the official results of RandConv.

Methods SVHN MNIST-M (A/B) SYN USPS Average (A/B)
RC [17] 57.52 - / 87.76 62.88 83.36 - / 72.88
Ours−T 62.76 74.52 / 81.91 78.07 93.01 77.09 / 78.94
Ours−C 70.35 82.98 / 88.34 77.40 93.52 81.06 / 82.40
Ours 69.67 82.30 / 87.72 79.77 93.67 81.35 / 82.72

methods with a simple random network structure. Thanks to
its effective generalization capability, we argue that the pro-
posed Pro-RandConv could be a strong baseline for various
tasks.

5.2. Fair comparison on MNIST-M

We confirmed that RandConv uses the test set of MNIST-
M [6] differently from the existing methods (e.g. PDEN [10],
M-ADA [14], and ME-ADA [19]). Existing methods use
MNIST-M consisting of 9,001 images, which we refer to as
set A. RandConv uses MNIST-M which consists of 10,000
images, which we refer to as set B. For a fair comparison, we
compare the performance of both MNIST-M sets. Table 6
shows that performance comparison on two sets of MNIST-
M. We emphasize that our Pro-RandConv method has higher
generalization capability than RandConv [17] in all domains
including MNIST-M.



Figure 2. Analysis of hyperparameter selection in the single domain generalization setting on Digits and PACS.

6. Hyperparameter selection

6.1. Hyperparameters of the progressive approach

The core idea of this paper is a progressive method that
initializes a random convolution layer once and then stacks
it multiple times with the same structure. Eventually, from
a hyperparameter selection perspective, RandConv’s tradi-
tional approach of choosing the kernel size changes to choos-
ing the number of repetitions of the convolution layers. For
example, RandConv generates random-style images based
on a kernel size randomly selected from {1, 3, 5, 7} for each
mini-batch. In a similar way, we choose a different number
of repetitions with uniform sampling from 1 to Lmax for
each mini-batch. Figure 1(c) and 2(a) in the main paper
show that as the kernel size increases, images augmented
by RandConv easily lose their semantics and eventually the
performance degrades rapidly. The progressive approach, on
the other hand, is less sensitive to increasing Lmax, since
the performance does not degrade significantly as the re-
ceptive field increases, as shown in Fig 2. However, the
computational cost increases proportionally to the number of
repetitions, so we chose a reasonable value of 10 to account
for the tradeoff.

6.2. Hyperparameters of convolution blocks

We further provide a performance comparison for all
hyperparameters in the random convolution block, as shown
in Fig. 2. We first analyze the hyperparameters for contrast
diversification. We chose σγ and σβ to be 0.5, as they show
the highest performance on both Digits and PACS datasets.
This means that the affine transformation parameters, γ and
β, are sampled from N(0, 0.52). Figure 7(a) and (b) in the
main paper show that γ and β can cause false distortion
or saturation if they are smaller or larger than 0.5, so we

recommend keeping them at 0.5 regardless of the dataset.
Next, we analyze the hyperparameters for the convolu-

tion weights. The convolution weights are initialized by [7]
as in RandConv (i.e., σw = 1/

√
k2Cin = 1/

√
33). We

further apply Gaussian smoothing to this kernel. For Gaus-
sian smoothing g[im, jm] = exp(− i2m+j2m

2σ2
g

), the smoothing
scale is sampled from σg ∼ U(ϵ, bg), where ϵ indicates a
small value. This means that σg is randomly sampled for
each mini-batch, so the smoothing effect is different each
time. This technique can be used to mitigate the problem of
severely distorted object semantics when the random offset
of the deformation convolution is too irregular and large in
scale. We chose bg to be 1.0 because it performs best on
both Digits and PACS datasets. As with the hyperparameter
selection for contrast diversification, we set the same value
for all datasets.

Finally, we introduce hyperparameters for deformable
convolution that further enhance texture diversity. The ten-
sor for deformable offsets consists of (2k2, H,W ), where
k is the kernel size of the convolution layer, and H and W
are the height and weight of an image, respectively. That
is, there are a total of 2k2 offsets per pixel in the image
of H × W , where 2 means the values of ∆im and ∆jm.
To induce natural geometric variation, we consider spatial
correlation by generating a total of 2k2 Gaussian Random
Fields (GRF) with a size of H ×W . We refer to this code1

for the GRF implementation, where spatial correlation can
be controlled by varying the coefficient α of the power spec-
trum. As shown in Fig. 7(f) of the main paper, the larger the
coefficient α, the higher the spatial correlation. We scaled
the Gaussian random field (GRF) by choosing a coefficient
of 10 for the power spectrum. Another hyperparameter is the
distortion scale σ∆ of the deformable offset. In particular,

1https://github.com/bsciolla/gaussian-random-fields



geometric information such as rotation is an important at-
tribute for digits recognition, so severe deformation impairs
class-specific semantic information. Figure 7(e) in the main
paper shows that the shape of the object becomes unrecog-
nizable as the scale increases. This hyperparameter is also
related to the size of the image, so we choose different hyper-
parameters according to image size. For Digits, a small scale
of 0.2 is used, while for PACS, OfficeHome, and VLCS,
a scale of 0.5 is used. As with the other hyperparameters,
uniform sampling is performed as U(ϵ, b∆) to make it less
sensitive to hyperparameter selection.

References
[1] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018. 1

[2] Sungha Choi, Sanghun Jung, Huiwon Yun, Joanne T Kim,
Seungryong Kim, and Jaegul Choo. Robustnet: Improving do-
main generalization in urban-scene segmentation via instance
selective whitening. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11580–11590, 2021. 1, 2

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for
semantic urban scene understanding. In Proceedings of the
IEEE conference on computer vision and pattern recognition,
pages 3213–3223, 2016. 1

[4] Ekin D. Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V. Le. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
June 2019. 3

[5] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le.
Randaugment: Practical automated data augmentation with a
reduced search space. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 702–703, 2020. 3

[6] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In International conference
on machine learning, pages 1180–1189. PMLR, 2015. 3

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages
1026–1034, 2015. 2, 4

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1

[9] Lei Huang, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Itera-
tive normalization: Beyond standardization towards efficient
whitening. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 4874–4883,
2019. 1, 2

[10] Lei Li, Ke Gao, Juan Cao, Ziyao Huang, Yepeng Weng, Xi-
aoyue Mi, Zhengze Yu, Xiaoya Li, and Boyang Xia. Pro-
gressive domain expansion network for single domain gen-
eralization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 224–233,
2021. 3

[11] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and
Peter Kontschieder. The mapillary vistas dataset for semantic
understanding of street scenes. In Proceedings of the IEEE
international conference on computer vision, pages 4990–
4999, 2017. 1

[12] Xingang Pan, Ping Luo, Jianping Shi, and Xiaoou Tang. Two
at once: Enhancing learning and generalization capacities
via ibn-net. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 464–479, 2018. 1, 2

[13] Xingang Pan, Xiaohang Zhan, Jianping Shi, Xiaoou Tang,
and Ping Luo. Switchable whitening for deep representation
learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1863–1871, 2019. 1,
2

[14] Fengchun Qiao, Long Zhao, and Xi Peng. Learning to
learn single domain generalization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12556–12565, 2020. 3

[15] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer games.
In European conference on computer vision, pages 102–118.
Springer, 2016. 1

[16] German Ros, Laura Sellart, Joanna Materzynska, David
Vazquez, and Antonio M Lopez. The synthia dataset: A large
collection of synthetic images for semantic segmentation of
urban scenes. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 3234–3243, 2016.
1

[17] Zhenlin Xu, Deyi Liu, Junlin Yang, Colin Raffel, and Marc
Niethammer. Robust and generalizable visual representation
learning via random convolutions. In International Confer-
ence on Learning Representations, 2021. 1, 2, 3

[18] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Darrell.
Bdd100k: A diverse driving dataset for heterogeneous multi-
task learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2636–2645,
2020. 1

[19] Long Zhao, Ting Liu, Xi Peng, and Dimitris Metaxas.
Maximum-entropy adversarial data augmentation for im-
proved generalization and robustness. In Advances in Neural
Information Processing Systems (NeurIPS), 2020. 3


	. Reproducibility
	. Domain generalizable semantic segmentation
	. Strategies for selecting images to augment
	. Component analysis
	. Additional performance analysis
	. Comparison with traditional augmentation
	. Fair comparison on MNIST-M

	. Hyperparameter selection
	. Hyperparameters of the progressive approach
	. Hyperparameters of convolution blocks


