
TMO: Textured Mesh Acquisition of Objects with a Mobile Device by using
Differentiable Rendering
Supplementary Material

Jaehoon Choi 1,2 Dongki Jung 1 Taejae Lee 1 Sangwook Kim 1 Youngdong Jung 1

Dinesh Manocha 2 Donghwan Lee 1

1NAVER LABS 2University of Maryland

1. Data Collection
We provide specific properties of our data collection process. As mentioned in the manuscript, ARKit-video collects

long video sequences to apply the RGBD SLAM methods [1] to extract poses and fuse a 3D model. However, we fail
to apply the state-of-the-art RGBD SLAM algorithm [1] for accurate pose estimation due to noisy depth measurements.
Instead, we utilize accurate poses from our RGBD-aided Structure from Motion (SfM) for geometry reconstruction and
texture optimization. ARKit-video includes recliner chair, cafe stand, delivery robot, office chair, and camera stand. We can
apply TSDF-fusion [3] with poses from RGBD-adied SfM to reconstruct geometry in Fig. 6. in the manuscript because of
the video sequence. AR-capture includes robot arm 1, robot arm 2, plant, tree, sofa, bike, recliner chair, cafe stand, delivery
robot, office chair, and camera stand. Except for sofa and tree, AR-capture contains less than fifty images. The sofa contains
108 images because the mobilephone camera has difficulty capturing this sofa due to the large size (This sofa can seat up to
15 people). We require a number of images to capture the whole shape of sofa. The tree contains 111 images and is also
large size object. In addition to this, the tree has a very complex shape (e.g. leaf) and thin structure (e.g. stem).

2. Implementation Details
In preprocessing stage, we apply both single-view and multi-view filtering two times. We regard 10 neighboring frames

as source images and set the threshold ϵ to 0.1. We keep depth pixels if the ratio of inliers is greater than 80%. We remove
depth points larger than 2.55m. Our RGBD-aided Structure from Motion (SfM) is based on COLMAP [5] implemented in
C++. Similar to the existing COLMAP, we use Ceres Solver to perform bundle adjustment. After SfM, we apply MVS
algorithm [6, 9] to provide the depth and normal for geometry reconstruction. Here, we also leverage the filtering algorithm
to remove the noisy values for the depth and normal maps obtained from the MVS algorithm. For the first stage of trainning
process in Sec. 3.2, we set wd to 1e-5 and wn to 1e-3. After the first stage, we build sparse voxel volume around surfaces
obtained from mesh. We set a depth level of octree to 8 for all classes. During the training for two MLPs (the SDF network and
color network), we also model the background by NeRF++ [12]. The sampling strategy is also similar to the NeuS [8]. For
geometry reconstruction and texture optimization, we use 41 - 108 images at 1280 x 720 pixels sampled from video sequence
of ARKit-video. Since AR-capture has large images at 4032x3096 resolutions, we resize their resolution to 1008x774
resolution for geometry reconstruction and texture optimization. The LiDAR sensor in the iOS device provides depth maps
and confidence maps with size 256 x 192. For mesh simplification, we exploit the quadric mesh simplification algorithm
provided by [14]. The learning rates for texture optimization start from 1e-3 and decay the learning rate by 0.1 once the
epoch reaches 500 and 2000 respectively. As mentioned in manuscript, we use the public github code for the classical
MVS [6, 9] and texture mapping [7] which are implemented in C++. We implement all geometry reconstruction and texture
optimization in PyTorch [4] and conduct all experiments on V100 GPU.

3. Additional Qualitative Comparisons
In the manuscript, we only show the reconstructed texture of delivery robot, recliner chair, robot arm 1, and office chair

(refer the Fig. 7 in the manuscript) due to the limited space. Here, we visualize our results of other objects: cafe stand,
sofa, plant, bike, robot arm2, tree, and camera stand. We compare our method with four different methods following the

1



manuscript. Compared to these methods, our visual results are visually sharper and perceptually closer to the original scene.
Furthermore, we apply our method to 3D indoor scene and show the feasibility of reconstructing the textured mesh for 3D
indoor scenes.

Scene (a) Ours (d) ACMP (e) NeuS(b) Waechter et al. (c) CMO
Figure 1. Qualitative comparison between (a) Ours, (b) Waechter et al. [7], (c) CMO [13], (d) ACMP [9], and (e) NeuS [8]. From top to
bottom, we show the results of cafe stand, sofa, plant, and bike. We collect bike at the outdoor environment in uncontrolled settings. The
sofa has the large size (it can seat up to 15 people). Our method can perform 3D reconstruction and texture mapping for the large object
and the object under the outdoor environment.



Scene (a) Ours (d) ACMP (e) NeuS(b) Waechter et al. (c) CMO

Figure 2. Qualitative comparison between (a) Ours, (b) Waechter et al. [7], (c) CMO [13], (d) ACMP [9], and (e) NeuS [8]. From top
to bottom, we show the results of robot arm2, tree, and camera stand. The tree has a very complex shape (e.g. leaf) and thin structure
(e.g. stem). Also, the camera stand has a thin structure. Our method can perform 3D reconstruction and texture mapping for objects with
complex shapes and thin structures.



Im
ag

e
W

ae
ch

te
r e

t a
l.

O
ur

s

Figure 3. Example reconstruction results of 3D indoor scenes. Although our manuscript focuses on objects, we apply our method to
reconstruct 3D indoor scenes from 2D images. We use 507 images for training. Our method can generate quite complete and smooth
reconstruction results. In particular, we show the textured mesh reconstructed by classical texture reconstruction [7] (2nd row) and texture
fine-tuning (3rd row) in Section 3.3. Our texture optimization method (3rd row) can remove ghosting effects and improve texture misalign-
ment (2nd row) in indoor scenes. For future research, we will be able to extend our method to perform geometry reconstruction and texture
optimization for 3D indoor scenes.

4. Qualitative Results
In Fig. 4, we show the reconstructed mesh for objects (robot arm 1, robot arm2, bike, sofa, camera stand, plant, and

tree) that are not included in the manuscript due to the limited space. Recently, MonoSDF [11] shows the state-of-the-
art performance for the neural implicit surface reconstruction. We avoid using learning-based algorithms because they are
expensive to acquire new training datasets and time-consuming to train other neural networks. In contrast, MonoSDF exploits
the power of pretrained Omnidata model [2] which is trained by the large and diverse multi-task datasets. This pre-trained
model can provide a surface normal and a depth map for a single image. While this pretrained model [2] requires large
amounts of data with expensive annotation costs and huge computational costs for training, MonoSDF succeeds to apply
this model to boost its performance for surface reconstruction. However, we observe both the advantages and limitations of
leveraging the pretrained model in our experiments. Figure 5 visualizes the reconstructed mesh of MonoSDF including our
method and VolSDF [10]. Compared to ours and VolSDF, MonoSDF shows advances in reconstructing low-textured areas
such as a back rest of the office chair and a paper box in the caffe stand. However, since its performance heavily relies on the
quality of the pretrained model, it fails to reconstruct the accurate 3D geometry of plant and tree in Fig. 4.



Sc
en

e
O

ur
s

M
on

oS
DF

AC
M

P

Figure 4. From left to right, we show the reconstruction results of robot arm 1, robot arm2, bike, sofa, camera stand, plant, and tree. We
notice that MonoSDF shows the high quality mesh for sofa and camera stand by improving the quality of low-textured regions. However,
since the pretrained model provides bad quality of monocular depth and normal maps, Our method performs better than MonoSDF for
plant, tree, and bike



VolSDFScene Ours MonoSDF

Figure 5. Triangular mesh reconstructed by our method, VolSDF [10], and MonoSDF [11]. From top to bottom, we show the results of
delivery robot, recliner chair, office chair, and cafe stand. Here, MonoSDF can reconstruct the smooth space for low-textured regions
compared to our method.



5. Run-time Analysis
Our pipeline consists of three modules. First, RGBD-aided SfM (Sec. 3.1) is imperative to refine initial poses due to

noisy sensor data in Fig. 5 (a). Without RGBD-aided SfM, our geometric reconstruction with initial poses shows poor quality
in Fig. 5 (b). This process takes around 5 minutes on i9 CPU and Nvidia 2080 GPU to estimate accurate poses. In Geometry
Reconstruction (Sec. 3.2), both classical 3D reconstruction methods like MVS and depth Fusion (ACMP and TSDF-Fusion
in Fig. 6) fail to generate a decent mesh. Thus, we emphasize that applying neural geometry reconstruction after MVS is
necessary to generate a high-quality mesh (our method in Fig. 6). Overall, most of the time in our pipeline is spent on
geometry reconstruction (around 10 hours on Nvidia V100 GPU). Then, the mesh simplification which only takes a few
seconds. Lastly, in Texture optimization (Sec. 3.3), the classical texture reconstruction [7] takes only a few seconds. Fig. 7
and Table 1. show that our proposed texture fine-tuning solves the seams and texture misalignment issues often seen with this
classical method. Our proposed module, which takes less than 15 minutes on i9 CPU and Nvidia 2080 GPU, can generate
visually realistic textures.

References
[1] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and Christian Theobalt. Bundlefusion: Real-time globally consis-

tent 3d reconstruction using on-the-fly surface reintegration. ACM Transactions on Graphics (ToG), 36(4):1, 2017. 1
[2] Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir Zamir. Omnidata: A scalable pipeline for making multi-task mid-level

vision datasets from 3d scans. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10786–10796,
2021. 4

[3] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie Shotton, Steve Hodges,
Dustin Freeman, Andrew Davison, et al. Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In
Proceedings of the 24th annual ACM symposium on User interface software and technology, pages 559–568, 2011. 1

[4] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca
Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017. 1

[5] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4104–4113, 2016. 1

[6] Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc Pollefeys. Pixelwise view selection for unstructured multi-
view stereo. In European Conference on Computer Vision, pages 501–518. Springer, 2016. 1

[7] Michael Waechter, Nils Moehrle, and Michael Goesele. Let there be color! large-scale texturing of 3d reconstructions. In European
conference on computer vision, pages 836–850. Springer, 2014. 1, 2, 3, 4, 7

[8] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus: Learning neural implicit surfaces
by volume rendering for multi-view reconstruction. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, 2021. 1, 2, 3

[9] Qingshan Xu and Wenbing Tao. Planar prior assisted patchmatch multi-view stereo. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 12516–12523, 2020. 1, 2, 3

[10] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit surfaces. Advances in Neural Information
Processing Systems, 34:4805–4815, 2021. 4, 6

[11] Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sattler, and Andreas Geiger. Monosdf: Exploring monocular geometric cues
for neural implicit surface reconstruction. arXiv preprint arXiv:2206.00665, 2022. 4, 6

[12] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. Nerf++: Analyzing and improving neural radiance fields. arXiv
preprint arXiv:2010.07492, 2020. 1

[13] Qian-Yi Zhou and Vladlen Koltun. Color map optimization for 3d reconstruction with consumer depth cameras. ACM Transactions
on Graphics (ToG), 33(4):1–10, 2014. 2, 3

[14] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3d: A modern library for 3d data processing. arXiv preprint arXiv:1801.09847,
2018. 1


	. Data Collection
	. Implementation Details
	. Additional Qualitative Comparisons
	. Qualitative Results
	. Run-time Analysis

