
STDLens: Model Hijacking-resilient Federated Learning for Object Detection
(Supplementary Materials)

Ka-Ho Chow, Ling Liu, Wenqi Wei, Fatih Ilhan, Yanzhao Wu
Georgia Instutite of Technology

Atlanta, GA, USA
khchow@gatech.edu, ling.liu@cc.gatech.edu, {wenqiwei,filhan,yanzhaowu}@gatech.edu

A. STDLens Implementation
We provide the implementation of STDLens at https://github.com/git-disl/STDLens. It is executed peri-

odically (e.g., every ten FL rounds) to continuously purge malicious clients. At an FL round t where STDLens is scheduled,
we run it to identify the malicious clients before conducting federated averaging. This allows STDLens to remove malicious
contributions without allowing them to contaminate the learning process at round t.

Algorithm 1 provides the pseudocode of the spatial signature analysis. Given a set of FL rounds R to be examined by
the current scheduled execution, we cross-check all gradients contributed from each participating client. In particular, at
each round r ∈ R and each participating client Pi, the server computes the gradients gr,i = 1

η (θr−1 − θr,i) from the
model updates θr,i with η to be the learning rate. The gradients will be appended to a list S for further examination. After
accumulating all gradients in R rounds (Line 4-10), we can separate the poisoned gradients from benign ones in three steps.
(1) For each class c ∈ {1, ..., C} where C is the total number of classes supported in the FL-based object detection system,
we extract the subset of gradients that correspond to the prediction of class c, denoted by gc

r,i, and append it to a set Sc (Line
11-15). (2) The set of class-specific gradients Sc is then standardized by removing the mean and scaling to unit variance
to produce Sc

SD (Line 16). (3) To facilitate analysis, we conduct dimensionality reduction using PCA with two principal
components on Sc

SD to produce Sc
PCA such that they can be projected onto a 2-dimensional space for forensic visualization

(Line 17-18). The classes with clustering effects are sent to the next stage.

Algorithm 1 Spatial Signature Analysis

1: Input: R: the set of FL rounds in an execution window
2: procedure SPATIALSIGNATUREANALYSIS(R)
3: S ← ∅
4: for r ∈ R do
5: Pr ← participants selected at round r
6: θr−1 ← global model parameters after round r − 1
7: for Pi ∈ Pr do
8: θr,i ← updated parameters from training on Di

9: gr,i ← 1
η (θr−1 − θr,i)

10: S ← S ∪ {gr,i}
11: for c ∈ {1, ..., C} do
12: Sc ← ∅
13: for gr,i ∈ S do
14: gc

r,i ← EXTRACT(gr,i, class = c)
15: Sc ← Sc ∪ {gc

r,i}
16: Sc

SD ← STANDARDIZE(Sc)
17: Sc

PCA ← PCA(Sc
SD, components = 2)

18: VISUALIZE(Sc
PCA)

1

https://github.com/git-disl/STDLens


Algorithm 2 Spatial-Temporal Signature Analysis

1: Input: Sc
PCA: the 2D spatial signatures of the poisoned source class c generated from Algorithm 1; ω: the window size

for the temporal signature
2: Output: Pmalicious: the list of malicious clients
3: procedure SPATIALTEMPORALSIGNATUREANALYSIS(Sc

PCA, ω)
4: τ ← HASHMAP()
5: for Pi ∈ P do
6: Gi ← the sequence of gradients in Sc

PCA from Pi

7: τ [Pi] = Υω(Gi)

8: τ SD ← STANDARDIZE(τ )
9: Sc

ST ← ∅
10: for gc

r,i ∈ Sc
PCA do

11: g̃c
r,i ← CONCATE(gc

r,i, τ SD[Pi])
12: Sc

ST ← Sc
ST ∪ {g̃c

r,i}
13: γ ← CLUSTERING(Sc

ST, clusters = 2)
14: Pcluster=1 ← clients belong to cluster 1 according to γ
15: Pcluster=2 ← clients belong to cluster 2 according to γ
16: ζcluster=1 ← 1

|Pcluster=1|
∑

Pi∈Pcluster=1
τ [Pi]

17: ζcluster=2 ← 1
|Pcluster=2|

∑
Pi∈Pcluster=2

τ [Pi]

18: return σ-DENSITYINSPECTION(Pcluster=1, ζcluster=1,Pcluster=2, ζcluster=2,Sc
PCA, τ SD)

Algorithm 2 provides the pseudocode of the spatial-temporal signature analysis. For each client Pi ∈ P in the FL, we
form an ordered sequence of collected gradients Gi it contributed throughout the federated training process and compute
the ω-based temporal signature Υω(Gi) (Line 5-7) using Equation 1. After standardizing the temporal signature of clients
by removing the mean and scaling to a unit variance, we concatenate each 2D spatial signature obtained from Algorithm 1
with the temporal signature of the client contributing the gradients (Line 8-12). Then, we conduct clustering analysis on the
spatial-temporal signatures to identify two clusters of clients (i.e., Pcluster=1 and Pcluster=2) and compute the average temporal
signature for each group of clients (i.e., ζcluster=1 and ζcluster=2). Finally, the signatures are passed to our σ-density inspection
to evaluate uncertainties and return the list of malicious clients with confident decisions (Line 13-18).

B. m-Separable Robust Statistics and Complexity Analysis

We provide the proof of Theorem 3.1. We first prove | ⟨∆, v⟩ | > 2ϕ√
m

under the assumption of ||∆||22 ≥
6ϕ2

m . At first,
given G = (1−m)H +mP , we have µG = (1−m)µH +mµP and

EX∼H [(X − µG)(X − µG)
T ] = ΣH +m2∆∆T

EX∼P [(X − µG)(X − µG)
T ] = ΣP + (1−m)2∆∆T (1)

Since G is a mixed distribution of H and P , we have

ΣG = (1−m)EX∼H [(X − µG)(X − µG)
T ] +mEX∼P [(X − µG)(X − µG)

T ]

= (1−m)ΣH +mΣP +m(1−m)∆∆T (2)

Since the l2 norm of the matrix is the largest singular value, we have ||∆∆T ||2 = ||∆||22, and subsequently:

m(1−m)∆∆T = m(1−m)||∆||22
≤ ||ΣG||2
= vT ΣGv

= (1−m)vT ΣHv +mvT ΣP v +m(1−m) ⟨∆, v⟩2

≤ ϕ2 +m(1−m) ⟨∆, v⟩2 .

(3)



The second line is due to ΣG ⪰ m(1 − m)∆∆T and so ||ΣG||2 ≥ m(1 − m)||∆||22. Based on the assumption that ϕ2 ≤
m
6 ||∆||

2
2 and 0 ≤ m ≤ 1/2, we have:

⟨∆, v⟩2 ≥
(
1− 1

6(1−m)

)
||∆||22 ≥ 2/3||∆||22 ≥

4ϕ2

m
. (4)

Next, we show that given | ⟨∆, v⟩ | > 2ϕ√
m

, there exist a τ = m| ⟨∆, v⟩ |+ ϕ√
m

such that:

Pr
X∼H

[| ⟨X − µG, v⟩ | > τ ] < m, Pr
X∼P

[| ⟨X − µG, v⟩ | < τ ] < m. (5)

We first prove the left side. For | ⟨X − µG, v⟩ | > τ , we have

| ⟨X − µH , v⟩ | = | ⟨X − µG, v⟩ −m ⟨∆, v⟩ |
≥ | ⟨X − µG, v⟩ | −m| ⟨∆, v⟩ |

> τ −m| ⟨∆, v⟩ | = ϕ√
m
.

(6)

The second line is triangle inequality, and the third line is due to | ⟨X − µG, v⟩ | > τ . Therefore,

Pr
X∼H

[| ⟨X − µG, v⟩ | > τ ] ≤ Pr
X∼H

[| ⟨X − µH , v⟩ | > ϕ√
m
] ≤ m. (7)

The right-hand side is due to Chebyshev’s inequality. Then, we prove the right side. For | ⟨X − µG, v⟩ | < τ ,

| ⟨X − µP , v⟩ | = | ⟨X − µG, v⟩ − (1−m) ⟨∆, v⟩ |
≥ (1−m)| ⟨∆, v⟩ | − | ⟨X − µG, v⟩ |
≥ (1−m)| ⟨∆, v⟩ | − τ

= (1−m)| ⟨∆, v⟩ | −m| ⟨∆, v⟩ | − ϕ√
m

= (1− 2m)| ⟨∆, v⟩ | − ϕ√
m

> (1− 2m)
2ϕ√
m
− ϕ√

m

=
ϕ√
m
− 4
√
mϕ >

ϕ√
m
.

(8)

The second line is triangle inequality, the third line is due to | ⟨X − µG, v⟩ | < τ , the fourth line is based on the assumption
τ = m| ⟨∆, v⟩ |+ ϕ√

m
, and the sixth line is due to the assumption | ⟨∆, v⟩ | > 2ϕ√

m
. Therefore,

Pr
X∼P

[| ⟨X − µG, v⟩ | > τ ] ≤ Pr
X∼P

[| ⟨X − µP , v⟩ | >
ϕ√
m
] ≤ m. (9)

The right-hand side is Chebyshev’s inequality. This completes the proof of P and H satisfying m-separable robust statistics.
The time complexity of STDLens is dominated by the projection of the output layer gradients onto a two-dimensional

space corresponding to the largest eigenvalues. Such a projection can be implemented through Principal Component Analysis
(PCA) with a complexity of O(min(p3, n3)), where p = |R|×N×k% is the number of gradient contributions to be projected
for a forensic window of |R| rounds, and n is the dimensionality of the output layer gradients.



C. Visual Examples - Class-Poison
A practical mitigation mechanism should not degrade the accuracy of the FL-trained model in benign scenarios, where no

clients are malicious and contribute Trojaned gradients. As shown in the 3rd column below, when STDLens is deployed to
protect an FL system with no one attempting to hijack the model, the resultant object detector can still correctly recognize
objects in all six images. The 4th column visualizes the detection results by the FL-trained model under Class-Poison, which
is configured to hijack the global model to mislabel any object of “person” to be “plant”. Such an attack is stealthy and
successful as only person objects are compromised, while the detection of objects of other classes (e.g., the boat in the 1st
row and the train in the 2nd row) can still be correctly recognized. With the same attack setting, the STDLens-protected FL
produces a model that can correctly detect all objects as shown in the 5th column.

Input Image Benign FL Hijacked FL
No Defense STDLens No Defense STDLens



D. Visual Examples - BBox-Poison
Different from Class-Poison, BBox-Poison strives to hijack the global model such that the objects of a certain victim class

(e.g., “person”) should be detected with a correct object existence and class confidence. However, their bounding boxes
should be incorrect, as shown in the 4th column below. Note that objects of other irrelevant classes (e.g., the motorbike in the
1st row and the bicycle in the 2nd row) need to be correctly detected. This attack can be detrimental to applications that rely
on the precise bounding boxes for the downstream operations such as planning a trajectory to avoid an obstacle. With the
same attack setting, the STDLens-protected FL produces a model that can correctly detect all objects, including the person
objects, as shown in the 5th column.

Input Image Benign FL Hijacked FL
No Defense STDLens No Defense STDLens



E. Visual Examples - Objn-Poison
Objn-Poison has a different hijacking objective than the above Class-Poison and BBox-Poison. Given a victim class (e.g.,

“person”), the hijacked model should not detect any object of it. The 4th column below shows visual examples. For instance,
the person in the 1st row cannot be detected, while the motorbike can be recognized with high confidence. Similarly, the
person in the 2nd row cannot be detected, and the cat is the only object found by the hijacked model. With the same attack
setting, the STDLens-protected FL produces a model that can correctly detect all objects as shown in the 5th column.

Input Image Benign FL Hijacked FL
No Defense STDLens No Defense STDLens


	. STDLens Implementation
	. bold0mu mumu mmsectionmmmm-Separable Robust Statistics and Complexity Analysis
	. Visual Examples - Class-Poison
	. Visual Examples - BBox-Poison
	. Visual Examples - Objn-Poison

