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A. Additional Details for Subjective Captioning

We provide additional details of our pilot study in
Sec. 3.2 that compare the performance of subjective cap-
tioning when using part-of-speech (POS) [4], mouse trace
[8] or sketch as a guiding signal into the image captioning
pipeline. Instead of choosing a common baseline to com-
pare subjective captioning when using POS, mouse trace,
and sketches, we measure the relative performance over
the standard baselines used in recent literature to study the
contribution of every guiding signal. (i) For POS [4], we
measure the relative performance using Wang et al. [17] as
baseline. Without using POS, i.e., (w/o)-POS gives a B-4/C
score of 31.1/100 as compared to with POS, i.e., (w)-POS
that gives 31.6/104/5. (ii) For mouse trace [4], we use [10]
to get (w/o)-Trace B-4/C score of 8.1/29.3 as compared to
(w)-Trace score of 24.6/106.5. This leads to a large relative
improvement of 16.5/77.2 to show the significant contribu-
tion of using mouse trace as guiding signal. (iii) For sketch,
we follow [3] to use [6] as baseline to get (w/o)-Sketch B-
4/C score of 31.8/42.7. We use cross-attention mechanism
in [8] to inject sketch as a guiding signal into our base-
line [7] to give a (w)-Sketch score of 42.7/121.6. This
gives a relative improvement of 10.9/16.1, which shows
that sketch as a guiding signal is better than POS and com-
petitive as mouse trace. Hence, we advocate for sketch as
a guiding signal to depict saliency since unlike POS [4] or
mouse trace [8], sketches are more expressive that can cap-
ture artistic interpretation like caricature [5].

B. Modelling more than three modalities (M > 3)

Sec. 4.4 optionally models the modality-agnostic com-
ponents of sketch or text using the function G(·) that con-
sists of a multihead cross-attention module MH(·) followed
by an attention-based pooling PMA(·). For M = 3, Ltot

cls is
defined as,
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In this section, we show how G(·) can be extended to more
than three modalities M > 3. Given a set of modality-
agnostic components as Ψ = {fag

1 , fag
2 , . . . , fag

M }, we can
solve for Ltot

cl as,
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We further elaborate Eq. (7) using Algorithm 1.

Algorithm 1 Compute generalised Ltot
cl for M > 3

Require: P ∈ R1×480 ▷ Learned weights.
Ψ = {fag

1 , fag
2 . . . , fag

M }, ∈ RM×480

Ltot
cl ← 0

for j ← 1 to M do
SM ← Ψ− {fag

i } ▷ (M − 1)× 480
HM ← MH(SM ) ▷ (M − 1)× 480
fM = PMA(HM ) = σ(PHT

M )HM ▷ (1× 480)
Ltot
cl ← Ltot

cl + Lcl(f
ag
j , fM )

end for
return Ltot

cl

C. Derivation of Disentanglement Loss in Eq. 3

For optionality across tasks, we disentangle the informa-
tion from sketch, text, and photo, given by k ∈ {s, t,p}
into a discriminative part fag

k shared across modalities, and
a generative part specific to one modality fsp

k . This infor-
mation split of fk = [fag

k , fsp
k ] is achieved in Sec. 4.3 by

minimising the mutual information between the modality-
agnostic and modality-specific components defined as,
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Given a variational distribution q(fsp
k ), due to positivity of

KL divergence we have,∫
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k ) logp(fsp
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∫
p(fsp

k ) logq(fsp
k ) (9)

Hence, approximating the modality-specific prior p(fsp
k )

with variational distribution q(fsp
k ) in Eq. (8) we get,
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Assuming a uniform prior distribution p(η), and its defini-
tion in Eq. 2 via conditional invertible neural network τk,
we have,
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where, H(fsp
k |f

ag
k ) is the constant data entropy which is

ignored in the final optimisation in Eq. 3.

D. Comparison with a parallel work [12]

A parallel work surfaced while writing this paper by
Sangkloy et al. [12] can optionally perform text-based im-
age retrieval (TBIR), sketch-based image retrieval (SBIR),
or both sketch+text based image retrieval (STBIR). How-
ever, the motivation of [12] is crucially different from ours.
While we focus on improving the latent space via disen-
tanglement into a modality-specific and modality-agnostic
component to support optionality across tasks (retrieval and
captioning) and modalities (using only sketch, only text, or
both as query), Sangkloy et al. [12] focused on improving
the encoders for sketch, text, and photo by adapting the re-
cently popular pre-trained CLIP [11]. To model only sketch,
only text, or both sketch+text for image retrieval, [12] used
a rather simple late-fusion technique performing element-
wise addition of sketch and text features. While the training
code of the proposed model in [12] is not been released yet,
our re-implementation of [12] using simple element-wise
addition of sketch and text features with CLIP encoders lead
to STBIR performance of 23.9/53.5 in Acc.@1/Acc.@10
which is significantly lower than our proposed method by
15.6/35.2 on FS-COCO [3]. Although CLIP [11] is highly
generalisable to open-set setups, it is difficult to adapt to
small downstream datasets like FS-COCO [3] and simul-
taneously outperform task-specific encoders like VGG-16
[13] used in the proposed method. A similar trend was also
observed in Chowdhury et al. [3].

E. Sketch and Text as Query for Image Retrieval

Few sheep are eating grass on a mountain.

Jet planes are flying high in the sky.

Train movinig on the track.

A man sitting on the horse.

Few airplanes on a runway.

F. Image Captioning v/s Subjective Captioning

A man in red jacket standing
near hills.

An old man is standing next
to a foothill

A man in red jacket
is flying a kit near

hills.

Cows are eating grass from
the grassland.

A herd of cows grazing on a
grassland.

Cows are eating
grass on the other
side of the fence.

A giraffe in the grass in the
wild.

A giraffe is walking next to
the road.

A giraffe is standing
next to a bus.

A herd of cows sitting with
hills in the background.

Two cows lying down in a
field.

Two cows sitting
near fence with hills

in background.

A horse is standing near
fence.

A horse is standing on grass
near fence.

A horse is standing
near fence during

sunset.



G. Complex Faliure Cases

We show qualitative results below where sketch + text
performs poorly. We observe this happens when both the
input sketch or text is ambigious (i.e., badly drawn sketch
or unprecise short textual phrases).

A small puppy
playing with a
white frisbee.

A little girl is
having fun

catching a ball

H. Clarification on Contributions

Our goal is not to design a model that is state-of-the-art
for ALL retrieval (e.g., FG-STBIR, FG-SBIR, FG-TBIR)
and generative (e.g., image, sketch, and subjective caption-
ing) tasks. Instead, we (i) design a generalisable model that
is competitive with a myriad of baselines (large models like
CLIP-LN or small ones like VGG) across multiple tasks;
(ii) we show how the benefits of sketch modality (acknowl-
edged by several prior works [3,15]) can be optionally com-
bined with multiple modalities like text and photo.

I. Comparison with Matrix Factorization

While our baseline MulCap performs feature multiplica-
tion similar to matrix factorization [9, 16], we additionally
adopt [16] to get subjective captioning (BELU-1, CIDEr)
score of (79.2± 0.6, 113.5± 1.1).

J. Different training seeds and evaluation of Shoes

Training on 5 different seeds, we report accuracy on
FG-STBIR task. For FS-COCO [3] we get Acc.@1 and
Acc.@10 of 25.6 ± 0.5 and 55.3 ± 0.3 respectively. Fur-
ther experimenting on shoe dataset [18], we get FG-STBIR
Acc.@1 and Acc.@10 scores of 53.2± 0.5 and 88.1± 0.2.

K. Additional Details on Pilot Study

Our pilot study aims to: (i) compare sketch vs. text as
a query for fine-grained image retrieval. For this, we use
standard baselines Triplet-SN (for SBIR) and CLIP-LN (for
TBIR) on 3000 sketch/photo, and text/photo pairs in FS-
COCO [3]. We observe that for some instances sketch is
a better query for image retrieval as it can depict complex
shapes, multiple objects, and spatial alignment. However,
not all objects are easy to draw (e.g., differentiate a ‘don-
key’ vs. a ‘horse’) but could be easily described via text.
(ii) For subjective captioning, we compare the relative im-
provements in standard captioning metrics (like M, R, C, S)
when using users’ sketch (to generate subjective captions)
vs. without using sketches (to generate subjective captions).

L. Comparison with Aytar et al. [2]

Ayatar et al. [2] learns a joint embedding space across
image, sound, and text. This is similar to our method, which
also aims to learn a joint embedding space across image,
sketch, and text. However, there are some key differences:
(i) [2] lacks the ability to combine multiple modalities like
sound+text for image retrieval. The ability to optionally
combine multiple modalities for image retrieval is crucial
to our motivation, e.g., fine-grained sketch-based image re-
trieval (FG-SBIR), fine-grained text-based image retrieval
(FG-TBIR), and fine-grained sketch+text based image re-
trieval (FG-STBIR). (ii) The embedding space of [2] only
supports discriminative tasks. This fails to support the gen-
erative objectives of our method, like image captioning,
sketch captioning, and subjective captioning. Nevertheless,
we compare Acc.@1 with [2] on FS-COCO [3] for FG-
SBIR and FG-TBIR to get 23.5% and 7.1% respectively.

M. Differences from prior works

Prior works like (i) Aytar et al. [1] study only cross-
modal transfer between a pair of modalities (sketch/photo,
or text/photo), not a combination of multiple modalities
(sketch+text, or sketch+photo) nor feature disentanglement
(modality-agnostic and modality-specific) which is crucial
for tasks like FG-STBIR and subjective captioning. (ii)
Song et al. [14] combines sketch+text for image retrieval
via a weighted sum of sketch-photo and text-photo dis-
tances computed independently. This simple setup is (a)
limited to retrieval (i.e., no captioning), and (b) lacks feature
disentanglement to filter our irrelevant modality-specific in-
formation (drawing style) when combining multiple modal-
ities (sketch+text). We bring new insights into scene under-
standing by showing the need for feature disentanglement to
(i) optionally combine multiple modalities, and (ii) support
both discriminative and generative tasks.
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