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A. Method Details

A.1. Task and Method

Action Space Actions are defined as transformations of

the end-effector pose. In particular, an action contains the

relative transformation of the 3D translation and 3D rotation

of the end-effector. More formally, given the current gripper

pose Tt ∈ SE(3) at time t, the policy π predicts an action

at = Tπ that indicates the relative transformation of the

end-effector. The next end-effector pose it then computed

by transforming the current pose Tt+1 = TtTπ . We then

use inverse kinematics to compute the next robot pose that

is sent to the PD-controllers of the physics engine.

*This work was done during an internship at NVIDIA.

Figure 1. The simulation environment from HandoverSim. The

red sphere indicates the goal region. Image source: Chao et al. [2].

Goal Space Goals are defined in a similar way. They cor-

respond to the relative transformation between the current

6DoF end-effector pose Tt and the pre-grasp pose Tpre, i.e.,

gt = TpreT
−1
t . Note that in contrast to related work [18],

we define the goal as the pre-grasp pose from where the ob-

ject can be grasped via a forward grasping motion (see main

paper Sec. 4.1) instead of the actual grasp pose.

Reward Function We use a sparse reward function. The

reward is 1 if a task has been successfully completed, i.e.,

the robot has successfully taken over the object from the

human and moved it to a predefined goal region (see red

sphere in Fig. 1) without dropping or collision with the hu-

man hand. The reward is 0 in all other cases. If the robot

collides with the human hand or the object is dropped, the

episode terminates early and the reward stays 0.

Grasping Phase The grasping phase comprises the for-

ward motion from the pre-grasp pose to the grasp pose,

the closing of the gripper, and the retraction of the object

(see Fig. 2). The forward motion moves the end-effector

8 cm into the z-direction of the gripper. Then, the gripper

is closed to grasp the object. Finally, a retraction trajec-

tory is executed in open-loop fashion to bring the object
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Figure 2. The grasping phase starts with a forward grasping motion that moves the end-effector from a pre-grasp pose to a grasp pose, then

grasps the object, and finally moves it to a pre-defined goal region.

into a goal location. We compute the trajectory by linearly

interpolating the path between the end-effector and the end-

effector goal location, and then transform the trajectory into

robot poses using inverse kinematics. Note that the grasping

phase is non-learning based and purely based on heuristics

and open-loop control.

Perception Module To transform the segmented object

point cloud po and hand point cloud ph into a single point

cloud p of constant size, we down- or up-sample both point

clouds. Since there are usually more points contained in the

segmented object point cloud (e.g., due to the hand being

occluded), we use a ratio of 87.5% to 12.5% for the object

and hand point clouds when sampling the single point cloud

p. We add two one-hot encoded vectors to the point cloud

p to indicate which points are from the object or hand point

clouds, respectively. We keep track of the latest available

point cloud pt−1. If there is no point cloud available at

time t, we use the latest available point cloud pt = pt−1.

A.2. Loss Functions

We provide a more detailed description of the loss func-

tions used to train our method. We mostly follow the de-

scription of [18].

Policy Loss As stated in the main paper (Eq. 3), our loss

function for the policy is defined as:

L(θ) = λLBC + (1− λ)LDDPG + LAUX. (1)

We first introduce the point matching loss function [?]:

LPOSE(T1, T2) =
1

|Xg|

∑

x∈Xg

||T1(x)− T2(x)||1, (2)

where Xg is a set of pre-defined points on the end effec-

tor. The loss computes the L1 norm between of these points

after applying pose transformations T1 and T2 to the end-

effector. The behavior cloning loss is defined as :

LBC(a∗,a) = LPOSE(a∗,a). (3)

The loss computes the L1 norm between these points after

applying the relative transformation a predicted by the pol-

icy and the relative transformation a∗ of the expert to the

end effector. The auxiliary loss is defined similarly:

LAUX(g∗,g) = LPOSE(g∗,g), (4)

where g is an additional output of the policy that predicts

the pre-grasp pose and g∗ indicates the pre-grasp pose of

the expert.

Critic Loss The critic loss is defined as:

L(φ) = LBE + LAUX, (5)

where LAUX is identical to Eq. 4 and LBE is the Bellman

equation defined in Eq. 1 of the main paper.

Grasp Prediction Loss The loss for the grasp prediction

network is defined as:

L(ζ) = LCE(σζ(ψ(p)),y), (6)

where LCE is a binary cross-entropy loss between the output

predictions of the model σζ(ψ(p)) and the binary labels y.

The labels indicate whether a pre-grasp pose will lead to a

successful grasp or not.

A.3. Training Details

Training Techniques We apply a variety of different

techniques to make the policies more robust. To this end,

during the sequential phase, we alternate between initial-

izing the robot in a home position and random poses (that

have the object and hand in its view). As proposed in [18],

we occasionally compute optimal actions using DAGGER

[14] during RL exploration and use them to supervise the

policy’s actions. Additionally, we start episodes of the RL

agent with a random amount of initial actions proposed by

the expert to further guide the training process. In the fine-

tuning phase, we drop most of these techniques and start all

the episodes from home position. We do not use DAGGER

anymore and rollouts from the RL agent are not started with

actions proposed by the expert.



Expert Demonstrations In the pretraining stage, we use

motion and grasp planning [17]. We plan trajectories un-

til the pre-grasp pose and then use the forward grasping

motion (cf. main paper Sec. 4.1) to grasp the object.

The ACRONYM dataset [5] is a large dataset for robot

grasp planning based on physics simulation. It is used for

grasp selection of the expert planner. However, because it

does not consider the human hand, we first prefilter suit-

able grasps offline. To this end, we parse grasps from

ACRONYM and combine them with the handover poses ex-

tracted from DexYCB [3], i.e., the pose at the last frame of

the sequences where the hand and object are not moving.

We check for collisions between the hand and the gripper

using a mesh collider. We then filter out sequences where

the robot and hand collide. During rollouts of expert trajec-

tories, we frequently add random perturbations to the robot

end-effector and replan the trajectory from the current pose.

Hindsight goals In the pretraining stage, the expert plan-

ner [17] provides goal labels for both expert demonstrations

and RL rollouts. In the finetuning stage, we cannot rely on

the goal selection from the planner anymore. We therefore

employ the hindsight scheme from [18], which was used

for training with novel objects, and utilize it for labeling se-

quences where the human and robot move simultaneously.

In particular, if an episode is successful, we can use the pre-

grasp pose from this episode as a label for supervision of

the goal-prediction task.

Grasp Prediction Data Collection To collect samples for

training the grasp prediction network, we utilize pre-grasps

generated from ACRONYM [5]. We initialize the hand and

object in the final pose of the handover trajectories from

HandoverSim [2]. We then use inverse kinematics to com-

pute a robot pose that matches the end-effector pre-grasp

pose. We then rollout the forward grasping motion (cf. main

paper Sec. 4.1) and check for grasp stability. The label is 1

if the grasp is successful, and 0 otherwise (e.g., hand col-

lision or object drop). For each pre-grasp pose, we collect

two more samples by adding small random noise (transla-

tion and rotation) to the end-effector pose. This is done to

balance the positive and negative labels in the dataset [11],

since the pre-grasp poses from ACRONYM will have a

higher chance of leading to a stable grasp.

B. Implementation Details

B.1. Network architecture

We use PointNet++ [12] as backbone for the grasp pre-

diction network, the actor network and the critic network.

We use separate backbones for each network. The networks

are fully-connected MLPs with three-layers and 256 neu-

rons per layer. The critic network has two heads as output,

one for predicting the Q-value and one for the auxiliary goal

Training Parameters Value

Num. iterations pretraining 10000

Num. iterations finetuning 5000

Buffer size pretraining 1e6

Buffer size finetuning 4e5

Parallel workers 3

Simulation timestep 1e-3s

Simulation steps per action 150

Network layers 3

Hidden size 256

Activation functions ReLU

Optimizer Adam [9]

Table 1. Overview of the most important parameters.

prediction. Similarly, the actor has one head for the goal

prediction and one for the action prediction. The critic net-

work takes as input the concatenation of a point cloud and

an action (see Fig. 3 in the main paper) . During critic train-

ing, transitions from the replay buffer are used as actions

and point clouds. On the other hand, during actor train-

ing, the actor’s action predictions are used together with the

point cloud from the replay buffer. The output of the grasp

prediction network is a scalar that indicates a probability.

We use Adam [9] as optimizer and ReLU activation func-

tions during training of all networks. The learning rate is

decreased over the course of training.

B.2. Training Information

We use TD3 [7] as our learning algorithm. To ensure a

fair comparison with GA-DDPG, we use their implemen-

tation of TD3 and only make minimal changes to learning

parameters. We therefore refer the reader to [18] for an ex-

act description of all the parameters used and report only

crucial or changed parameters in Tab. 1. In every iteration,

we use three parallel workers to rollout episodes. There-

after, we update our networks using 20 optimization steps.

We run the pretraining for 10k iterations and the finetuning

for 5k iterations. The grasp prediction network is trained

for 1k iterations.

We train our method on a single Nvidia V100 32GB.

Training the full method takes around 72-96 hours, about

36-48 hours for pretraining and 36-48 hours for finetuning.

The grasp prediction network is trained offline and training

takes roughly 1 hour.

C. Additional Simulation Evaluation

HandoverSim Benchmark For completeness, we report

the results of the remaining settings from HandoverSim [2].

Namely, we add the settings “S1 - Unseen Subjects” in

Tab. 3, “S2 - Unseen Handedness” in Tab. 4, and “S3 -

Unseen Objects” in Tab. 5. Overall, we observe that the

results are consistent with the main paper. In general, the



success (%)
failure (%)

contact drop timeout

w/ Kinect noise 59.49 13.19 19.68 7.64

Ours 75.23 9.26 13.43 2.08

Table 2. We analyze the effect of simulated Kinect noise [8] on

our model. Results are averaged over 3 random seeds.

main baseline GA-DDPG [18] struggles in the simultane-

ous setting. Our method has significantly better perfor-

mance in terms of overall success rates, while retaining a

slightly slower mean accumulated time for successful han-

dovers. This is because GA-DDPG often goes for a grasp

in the most direct path, whereas our approach searches for a

safe pre-grasp pose, from where the object can be grasped.

For a qualitative demonstration of this behavior, we refer to

the supplementary video. We also compare our final model

with the pretrained versions (Ours w/o ft.). The results fur-

ther indicate that finetuning helps improve the model, espe-

cially in the simultaneous setting, e.g., the success rate in

Tab. 3 improves from 62.78% to 73.33% with the finetuned

model.

Notably, results on S2 and S3 suggest that our method

can generalize well to unseen subjects and unseen objects.

This result is important because in unstructured real world

environments, neither objects nor subjects have been en-

countered during training.

Robustness Analysis We evaluate in simulation how

noisy observations affect our pipeline by (1) adding sim-

ulated Kinect noise to depth images [8] and (2) testing with

imperfect hand segmentation. For (2), we divide the hand

into 6 different parts (fingers and palm) and re-label a sub-

set of parts as object in the segmentation mask. We vary

the mislabeling ratio (“0/6” no parts and “6/6” all parts) and

sample randomly which parts will be mislabeled for a given

episode. As expected, performance degrades with increas-

ing noise in depth (e.g., a 59.49% success rate in Tab. 2)

and increasing mislabeling ratio (e.g., decreasing success

rate and increasing hand collisions in Fig. 3).

D. Limitations and Future Work

We will now discuss failure cases of our method and

exciting directions for future work. Some failures occur

with smaller objects, where the human hand often encloses

large parts of the object. For the robot to find grasps where

the gripper does not touch the hand at all in such cases is

extremely difficult, especially when only having access to

point cloud input. The grasp prediction task that decides

when to switch from approaching to grasping is quite chal-

lenging, because a small change in end-effector pose can al-

ready cause a handover to fail. We sometimes find that the

grasp prediction triggers the grasp too early or in an instance

where the object will eventually drop. Since the grasp pre-
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Figure 3. Segmentation Mislabeling. Our method’s success

(blue) and hand collision rate (red) under increasing degree of mis-

labeling hand as object segments.

Figure 4. Real World Failures. Left: Missing/sparse point cloud

of transparent/dark objects in real world perception. Right: Han-

dover policy behavior.

diction network is trained offline, it may be improved by

finetuning in online fashion with experiences from policy

rollouts. Furthermore, we investigate sensor-challenging

objects in real world transfers. Our depth sensor is vulner-

able to transparent or dark objects, which may lead to fail-

ures of the policy (Fig. 4). Improving the vision pipeline to

detect such objects reliably [21] could be a viable direction.

We find that most human trajectories in HandoverSim

have roughly the same length. A future direction can there-

fore include exploring a wider variety of human behaviors.

For example, in a realistic, interactive setting the human

may be constantly moving, and the robot should only take

objects from the human once it wants to hand them over.

Anticipating the intent and future states of the human could

provide a more natural system. We also noticed that hu-

mans start adapting to the robot once they learn how it be-

haves. Therefore, introducing a multi-agent training scheme

where both the simulated human and the robot are trained

jointly [10] is interesting. Another direction could include

making the RL exploration more efficient, as it currently

still requires long training times, e.g., by leveraging state-

agnostic priors [1] or using an intrinsic reward to incentivize

contacts [16]. Lastly, our framework can potentially serve

as a real world application framework to evaluate vision

pipelines, e.g., for testing hand and object pose estimation

estimation pipelines [15, 22] or segmentation models [6].



S1: Unseen Subjects

success (%)
mean accum time (s) failure (%)

exec plan total contact drop timeout total
S

eq
u

en
ti

al

OMG Planner [17] † 62.78 8.012 1.355 9.366 33.33 2.22 1.67 37.22

Yang et al. [20] † 62.78 4.719 0.039 4.758 14.44 7.78 15.00 37.22

GA-DDPG [18] 55.00 6.791 0.136 6.927 8.89 15.00 21.11 45.00

Ours w/o ft. 68.15 7.151 0.164 7.314 6.85 12.96 12.04 31.85

Ours 75.00 7.108 0.159 7.267 5.00 12.59 7.41 25.00

S
im

u
lt

. GA-DDPG [18] 33.33 4.261 0.132 4.393 15.56 21.67 29.44 66.67

Ours w/o ft. 62.78 5.695 0.164 5.859 5.93 17.59 13.70 37.22

Ours 73.33 5.633 0.158 5.791 5.56 15.37 5.74 26.67

Table 3. Unseen Subjects Comparison of our method against various baselines from the HandoverSim benchmark [2] in the setting “S1:

Unseen Subjects”. The results of our method are averaged over 3 random seeds. †: both methods [17, 20] are evaluated with ground-truth

states in [2] and thus are not directly comparable with ours.

S2: Unseen Handedness

success (%)
mean accum time (s) failure (%)

exec plan total contact drop timeout total

S
eq

u
en

ti
al

OMG Planner [17] † 62.78 8.275 1.481 9.755 30.56 3.89 2.78 37.22

Yang et al. [20] † 62.50 4.808 0.034 4.843 16.11 10.56 10.83 37.50

GA-DDPG [18] 55.00 7.145 0.129 7.274 8.61 17.78 18.61 45.00

Ours w/o ft. 71.76 7.045 0.140 7.185 8.80 14.72 4.72 28.24

Ours 72.96 7.101 0.144 7.245 11.29 12.69 3.05 27.04

S
im

u
lt

. GA-DDPG [18] 28.33 4.747 0.133 4.881 9.17 34.44 28.06 71.67

Ours w/o ft. 64.81 5.638 0.144 5.783 8.24 21.02 5.93 35.19

Ours 71.11 5.771 0.150 5.921 10.00 15.37 3.61 28.89

Table 4. Unseen Handedness. Comparison of our method against various baselines from the HandoverSim benchmark [2] in the setting

“S2: Unseen Handedness”. The results of our method are averaged over 3 random seeds. †: both methods [17, 20] are evaluated with

ground-truth states in [2] and are not directly comparable with ours.

S3: Unseen Objects

success (%)
mean accum time (s) failure (%)

exec plan total contact drop timeout total

S
eq

u
en

ti
al

OMG Planner [17] † 69.00 8.478 1.588 10.066 23.00 4.00 4.00 31.00

Yang et al. [20] † 62.00 4.805 0.031 4.837 18.00 9.00 11.00 38.00

GA-DDPG [18] 50.00 7.305 0.135 7.440 5.00 23.00 22.00 50.00

Ours w/o ft. 76.33 7.410 0.151 7.565 9.33 10.67 3.67 23.67

Ours 79.67 7.499 0.156 7.656 6.33 10.33 3.67 20.33

S
im

u
lt

. GA-DDPG [18] 33.00 4.948 0.123 5.071 10.00 33.00 24.00 67.00

Ours w/o ft. 72.00 6.242 0.168 6.410 7.33 13.67 7.00 28.00

Ours 75.67 6.153 0.160 6.314 5.00 13.33 6.00 24.33

Table 5. Unseen Object Evaluation. Comparison of our method against baselines from the HandoverSim benchmark [2] in the setting

“S3: Unseen Objects”. The results of our method are averaged over 3 random seeds. †: both methods [17, 20] are evaluated with ground-

truth states in [2] and are not directly comparable with ours.
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Figure 5. The setup of our real-world handover system. A Franka Emika Panda robot and an Azure Kinect camera are rigidly mounted

on a table. The human participant will stand across the table (in the green area), pick up objects, and attempt handovers to the robot. The

robot will drop the object in a designated area (blue) after retrieving it from the handover.

E. Sim-to-Real Transfer

E.1. System Setup

Fig. 5 shows the setup of our real-world handover sys-

tem. The setup consists of a Franka Emika Panda robot

and a Azure Kinect camera, both rigidly mounted to a ta-

ble. The Azure Kinect is mounted externally to the robot

with the extrinsics calibrated, and is perceiving the scenes

from a third-person view with an RGB-D stream. The ob-

jects for handover are initially placed on the table. During

handovers, the human participant will stand on the opposite

side of the table (in the green area), pick up the objects, and

attempt handovers to the robot. If the robot successfully re-

trieves the object, it will move the end effector to a drop-off

area (blue) and drop the object into a box.

Since our policy expects a segmented point cloud at the

input, we follow the perception pipeline used in [18, 20]

to generate segmented point clouds for the hand and ob-

ject. The Azure Kinect is launched to provide a continuous

stream of RGB images and point clouds. We first use Azure

Kinect’s Body Tracking SDK to track the 3D location of

the wrist joint of the handover hand. At each time frame,

we crop a sub-point cloud around the tracked joint location

which includes points on both the hand and the held object.

We additionally run a 2D hand segmentation model on the

RGB image and use it to label the hand points in the cropped

point cloud. We treat all the points not labeled as hand as

the object. Since our policies are trained for wrist camera

views and we use an external camera in the real-world sys-

tem, we need to additionally compensate for the view point

change. We transform the segmented point cloud from the

external camera’s frame to the wrist camera’s frame using

the calibrated robot-camera extrinsics and forward kinemat-

ics. This way we can simulate the segmented point cloud

input which the policy observes during the training in sim-

ulation. Note that this perception pipeline can induce sim-

to-real gaps from several sources: (1) noises in the point

clouds from real cameras, (2) noises from body tracking

and hand segmentation errors, (3) the change in view points

(i.e., from the wrist to external camera), and (4) unseen hu-

man behavior. To make our transfer policy more robust to

diversity in human behvaior, we include human-object tra-

jectories generated with D-Grasp [4] during training.

Compared to GA-DDPG [18], we adapt the control flow

of the policy to explicitly incorporate the pre-grasp mech-

anism in our method. To control the motion of Franka, we

follow the pipeline used in [18, 20]. Given a target end ef-

fector pose at a new time step, we use Riemannian Motion

Policies (RMPs) [13] to generate a smooth trajectory for



Figure 6. We conducted a pilot study by controlling the handover

poses from the human subject.

the robot arm. We use libfranka to control the Franka arm

to follow the trajectory. The robot will start moving only

when a segmented point cloud is perceived. Once it decides

to grasp, we will execute a predefined motion where the

robot closes the gripper, lifts the end effector, moves to the

drop-off area, and opens the gripper. The robot will return

to a standby pose and remain in that state if no segmented

point cloud is perceived or after it drops off the object.

E.2. Pilot Study

The goal of the pilot study is to provide a standardized

benchmarking of the sim-to-real transfer. We instruct the

participated subjects to follow a set of pre-determined han-

dover poses when performing the handovers. We keep the

instructed handover poses fixed for different methods to en-

sure a fair comparison.

Evaluation Protocol First, we select the following 10

objects from the YCB-Video dataset [19]:

• 011 banana

• 037 scissors

• 006 mustard bottle

• 024 bowl

• 040 large marker

• 003 cracker box

• 052 extra large clamp

• 008 pudding box

• 010 potted meat can

• 021 bleach cleanser

For each object, we select 3 handover poses separately for

the right and left hand, totaling 60 handover poses for both

hands. The set of handover poses is selected to represent

the handover task at different levels of difficulty: for each

hand-object combination, we select one common handover

pose (“pose 1”), one handover pose with the object held

horizontally (“pose 2”), and one handover pose with severe

hand occlusion by holding the object from the top (“pose

3”). Fig. 6 illustrates the setting where a subject holds an

object in a controlled handover pose in front of the robot.

Figs. 7 and 8 show the selected handover poses for the right

and left hand respectively.

For each subject, we iterate through the 60 handover

poses and evaluate each pose once. A handover is consid-

ered failed if (1) the robot pinches (or is about to pinch)

the subject’s hand (in which case the subject may evade the

grasp), (2) the robot drops the object during the handover,

or (3) the robot has reached an irrecoverable state (e.g., a

locked arm due to joint limits). A handover is successful

if the robot retrieves the object from the subject’s hand and

successfully move it to the drop-off area without incurring

any failures. We evaluate the same handover poses on two

methods: GA-DDPG [18] and ours. Therefore, each subject

will perform 120 handover trials in total.

Results We conduct our pilot study with two subjects.

Tabs. 6 and 7 present the results of subject 1 and 2 respec-

tively. For each pose, we report whether the handover is

successful (“succ.”), and if so, the completion time of the

handover (“time”), defined as the time span from the robot

starts moving to the moment where the gripper lifts the ob-

ject. For each object, we also report the mean success rate

and mean completion time (see the “mean” column). For

each subject, we present the results separately for the right

hand (top), left hand (middle), and overall (bottom).

We observe a gap in the performance between the three

selected handover poses. Both methods have a lower per-

formance on “pose 2” and “pose 3” compared to “pose 1”.

For example, for subject 1, the overall success rate is 2/20
for “pose 2” versus 16/20 for “pose 1” for GA-DDPG [18],

and 9/20 for “pose 2” versus 19/20 for “pose 1” for ours.

This demonstrates the increase in challenges when the han-

dover is conducted in uncommon poses (“pose 2”), where

the robot needs to rotate the end effector, or when the human

hand is blocking the robot’s closest grasp point (“pose 3”),

where the robot needs to diverge to avoid hand collision.

However, our method is able to handle these cases better

since the model is trained with diverse handover poses and

supervision on hand collision avoidance (e.g., for “pose 3”

on subject 1, an overall success rate of 13/20 for ours versus

3/20 for GA-DDPG [18]). In addition, our method achieves

a higher overall success rate on both subjects (i.e., 41/60
versus 21/60 on subject 1 and 41/60 versus 33/60 on sub-

ject 2), demonstrating its efficacy over GA-DDPG [18].

However, our method still fails for 19 trials on each sub-

ject. This can be attributed to either the sim-to-real gaps

discussed in Appendix E.1, an inherent failure of the policy

on handling these cases, or an interplay of both.

E.3. User Evaluation

In contrast to the standardized evaluation in the pilot

study, the goal of our user evaluation is to collect feed-

back from lay users with their own handover preferences.



011 banana

pose 1 pose 2 pose 3

037 scissors

pose 1 pose 2 pose 3
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Figure 7. The instructed handover poses for the right hand in the pilot study. We adopt 10 objects from the YCB-Video dataset [19] and

pre-select 3 handover poses per object with varying handover difficulties, totaling 30 handover poses for the right hand.
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Figure 8. The instructed handover poses for the left hand in the pilot study. Similar to the right hand poses in Fig. 7, we adopt the same 10

objects from the YCB-Video dataset [19] and pre-select 3 handover poses per object, totaling 30 handover poses for the left hand.



subject 1: right hand

GA-DDPG [18] Ours

pose 1 pose 2 pose 3 mean pose 1 pose 2 pose 3 mean

succ. time succ. time succ. time succ. time succ. time succ. time succ. time succ. time

011 banana ✓ 11.313 ✓ 10.790 × – 2 / 3 11.051 ✓ 8.889 ✓ 18.535 ✓ 9.292 3 / 3 12.239

037 scissors ✓ 9.571 × – × – 1 / 3 9.571 ✓ 8.863 × – ✓ 10.216 2 / 3 9.539

006 mustard bottle × – × – × – 0 / 3 – ✓ 9.310 × – ✓ 10.792 2 / 3 10.051

024 bowl ✓ 9.719 × – ✓ 10.760 2 / 3 10.239 ✓ 10.634 × – ✓ 13.333 2 / 3 11.983

040 large marker × – × – × – 0 / 3 – ✓ 9.605 × – × – 1 / 3 9.605

003 cracker box ✓ 9.284 × – ✓ 10.440 2 / 3 9.862 ✓ 16.782 × – × – 1 / 3 16.782

052 extra large clamp × – × – × – 0 / 3 – ✓ 10.228 ✓ 19.855 ✓ 10.796 3 / 3 13.626

008 pudding box ✓ 9.565 × – ✓ 9.095 2 / 3 9.330 ✓ 10.583 ✓ 11.833 ✓ 11.387 3 / 3 11.267

010 potted meat can ✓ 9.770 × – × – 1 / 3 9.770 ✓ 13.500 × – ✓ 10.908 2 / 3 12.204

021 bleach cleanser ✓ 9.709 ✓ 12.367 × – 2 / 3 11.038 ✓ 11.016 ✓ 11.572 ✓ 11.539 3 / 3 11.376

total 7 / 10 9.847 2 / 10 11.579 3 / 10 10.098 12 / 30 10.199 10 / 10 10.941 4 / 10 15.449 8 / 10 11.033 22 / 30 11.794

subject 1: left hand

GA-DDPG [18] Ours

pose 1 pose 2 pose 3 mean pose 1 pose 2 pose 3 mean

succ. time succ. time succ. time succ. time succ. time succ. time succ. time succ. time

011 banana ✓ 9.790 × – × – 1 / 3 9.790 ✓ 9.180 ✓ 9.192 ✓ 8.931 3 / 3 9.101

037 scissors ✓ 9.549 × – × – 1 / 3 9.549 ✓ 8.973 ✓ 9.485 ✓ 10.254 3 / 3 9.571

006 mustard bottle ✓ 10.135 × – × – 1 / 3 10.135 ✓ 8.499 × – × – 1 / 3 8.499

024 bowl ✓ 10.062 × – × – 1 / 3 10.062 ✓ 14.572 × – ✓ 10.016 2 / 3 12.294

040 large marker × – × – × – 0 / 3 – ✓ 15.736 ✓ 14.601 ✓ 10.626 3 / 3 13.654

003 cracker box ✓ 10.231 × – × – 1 / 3 10.231 ✓ 14.836 × – × – 1 / 3 14.836

052 extra large clamp ✓ 8.513 × – × – 1 / 3 8.513 ✓ 10.186 × – × – 1 / 3 10.186

008 pudding box ✓ 10.851 × – × – 1 / 3 10.851 ✓ 17.965 ✓ 13.015 ✓ 20.966 3 / 3 17.315

010 potted meat can ✓ 9.810 × – × – 1 / 3 9.810 × – × – × – 0 / 3 –

021 bleach cleanser ✓ 24.872 × – × – 1 / 3 24.872 ✓ 15.028 ✓ 9.378 × – 2 / 3 12.203

total 9 / 10 11.535 0 / 10 – 0 / 10 – 9 / 30 11.535 9 / 10 12.775 5 / 10 11.134 5 / 10 12.159 19 / 30 12.181

subject 1: overall

GA-DDPG [18] Ours

pose 1 pose 2 pose 3 mean pose 1 pose 2 pose 3 mean

succ. time succ. time succ. time succ. time succ. time succ. time succ. time succ. time

011 banana 2 / 2 10.551 1 / 2 10.282 0 / 2 – 3 / 6 10.631 2 / 2 9.034 2 / 2 13.864 2 / 2 9.111 6 / 6 10.670

037 scissors 2 / 2 9.560 0 / 2 – 0 / 2 – 2 / 6 9.560 2 / 2 8.918 1 / 2 10.292 2 / 2 10.235 5 / 6 9.558

006 mustard bottle 1 / 2 10.064 0 / 2 – 0 / 2 – 1 / 6 10.135 2 / 2 8.904 0 / 2 – 1 / 2 10.038 3 / 6 9.534

024 bowl 2 / 2 9.890 0 / 2 – 1 / 2 10.076 3 / 6 10.180 2 / 2 12.603 0 / 2 – 2 / 2 11.675 4 / 6 12.139

040 large marker 0 / 2 – 0 / 2 – 0 / 2 – 0 / 6 – 2 / 2 12.670 1 / 2 14.268 1 / 2 10.481 4 / 6 12.642

003 cracker box 2 / 2 9.757 0 / 2 – 1 / 2 10.021 3 / 6 9.985 2 / 2 15.809 0 / 2 – 0 / 2 – 3 / 6 15.809

052 extra large clamp 1 / 2 8.874 0 / 2 – 0 / 2 – 1 / 6 8.513 2 / 2 10.207 1 / 2 15.824 1 / 2 16.119 4 / 6 12.766

008 pudding box 2 / 2 10.208 0 / 2 – 1 / 2 9.579 3 / 6 9.837 2 / 2 14.274 2 / 2 12.424 2 / 2 16.176 6 / 6 14.291

010 potted meat can 2 / 2 9.790 0 / 2 – 0 / 2 – 2 / 6 9.790 1 / 2 14.458 0 / 2 – 1 / 2 12.596 2 / 6 12.204

021 bleach cleanser 2 / 2 17.291 1 / 2 11.867 0 / 2 – 3 / 6 15.650 2 / 2 13.022 2 / 2 10.475 1 / 2 16.574 5 / 6 11.707

total 16 / 20 10.797 2 / 20 11.579 3 / 20 10.098 21 / 60 10.771 19 / 20 11.810 9 / 20 13.052 13 / 20 11.466 41 / 60 11.973

Table 6. The pilot study results of subject 1. We present the results separately for the right-hand handovers (top), the left-hand handovers

(middle), and overall (bottom). We report both the success rate (“succ.”) and the completion time (“time”). Our method outperforms

GA-DDPG [18] in the success rate.

Therefore, we do not constrain the users on how they hand

over objects. Instead, we let them carry out in ways which

they feel most comfortable (Fig. 9). Rather than objective

metrics, we collect subjective feedback from the users via a

questionnaire.

Evaluation Protocol We adopt the same 10 objects from

the pilot study, and ask each user to hand over each object

once with their right hand. We instruct the users to hand

over objects “in any way they like”. We compare the two

methods (i.e., GA-DDPG [18] and ours) by repeating the

same process, i.e., we instruct the user to hand over the 10

objects to one system first, followed by to the other system.

We counterbalance the order of the two systems throughout

the user evaluation to avoid bias. During their experiments,

the users are asked to fill out a questionnaire with Likert-

scale and open-ended questions to provide feedback after

they interact with each system.

Results We conduct our user evaluation with 6 users

(Fig. 9). The evaluation results are presented in Fig. 10

for GA-DDPG [18] and Fig. 11 for our method. Each fig-



subject 2: right hand

GA-DDPG [18] Ours

pose 1 pose 2 pose 3 mean pose 1 pose 2 pose 3 mean

succ. time succ. time succ. time succ. time succ. time succ. time succ. time succ. time

011 banana ✓ 13.599 ✓ 15.559 ✓ 9.333 3 / 3 12.830 ✓ 11.995 × – ✓ 8.046 2 / 3 10.021

037 scissors ✓ 10.609 × – ✓ 9.769 2 / 3 10.189 ✓ 8.343 × – ✓ 8.583 2 / 3 8.463

006 mustard bottle ✓ 9.070 × – × – 1 / 3 9.070 ✓ 8.787 × – ✓ 9.186 2 / 3 8.987

024 bowl × – × – ✓ 9.085 1 / 3 9.085 × – × – ✓ 9.506 1 / 3 9.506

040 large marker ✓ 10.762 × – ✓ 8.748 2 / 3 9.755 ✓ 9.035 × – ✓ 17.609 2 / 3 13.322

003 cracker box × – × – × – 0 / 3 – ✓ 11.629 × – ✓ 11.563 2 / 3 11.596

052 extra large clamp ✓ 9.319 × – ✓ 9.156 2 / 3 9.237 ✓ 9.788 ✓ 17.289 × – 2 / 3 13.539

008 pudding box ✓ 10.402 × – ✓ 8.838 2 / 3 9.620 ✓ 8.803 × – ✓ 11.061 2 / 3 9.932

010 potted meat can × – × – ✓ 12.886 1 / 3 12.886 ✓ 8.540 × – ✓ 8.610 2 / 3 8.575

021 bleach cleanser ✓ 10.571 ✓ 10.223 × – 2 / 3 10.397 ✓ 8.241 × – ✓ 11.706 2 / 3 9.974

total 7 / 10 10.619 2 / 10 12.891 7 / 10 9.688 16 / 30 10.495 9 / 10 9.462 1 / 10 17.289 9 / 10 10.652 19 / 30 10.438

subject 2: left hand

GA-DDPG [18] Ours

pose 1 pose 2 pose 3 mean pose 1 pose 2 pose 3 mean

succ. time succ. time succ. time succ. time succ. time succ. time succ. time succ. time

011 banana ✓ 8.709 ✓ 9.186 ✓ 8.570 3 / 3 8.821 ✓ 9.096 ✓ 10.447 ✓ 7.965 3 / 3 9.169

037 scissors ✓ 9.849 × – × – 1 / 3 9.849 ✓ 8.587 ✓ 10.570 ✓ 8.370 3 / 3 9.176

006 mustard bottle × – × – ✓ 11.332 1 / 3 11.332 ✓ 8.078 × – ✓ 9.703 2 / 3 8.891

024 bowl ✓ 9.183 × – ✓ 9.214 2 / 3 9.199 × – ✓ 9.958 ✓ 17.879 2 / 3 13.918

040 large marker ✓ 10.651 × – ✓ 9.881 2 / 3 10.266 ✓ 9.804 ✓ 14.292 ✓ 9.466 3 / 3 11.187

003 cracker box × – × – × – 0 / 3 – × – × – × – 0 / 3 –

052 extra large clamp ✓ 19.748 ✓ 9.566 ✓ 10.204 3 / 3 13.173 ✓ 19.253 ✓ 9.632 ✓ 9.552 3 / 3 12.813

008 pudding box ✓ 9.794 × – ✓ 9.236 2 / 3 9.515 ✓ 8.532 × – ✓ 8.590 2 / 3 8.561

010 potted meat can ✓ 9.353 × – ✓ 9.240 2 / 3 9.296 ✓ 8.344 × – ✓ 9.277 2 / 3 8.810

021 bleach cleanser ✓ 10.140 × – × – 1 / 3 10.140 ✓ 9.301 × – ✓ 10.288 2 / 3 9.795

total 8 / 10 10.928 2 / 10 9.376 7 / 10 9.668 17 / 30 10.227 8 / 10 10.125 5 / 10 10.980 9 / 10 10.121 22 / 30 10.318

subject 2: overall

GA-DDPG [18] Ours

pose 1 pose 2 pose 3 mean pose 1 pose 2 pose 3 mean

succ. time succ. time succ. time succ. time succ. time succ. time succ. time succ. time

011 banana 2 / 2 11.154 2 / 2 12.372 2 / 2 8.951 6 / 6 10.826 2 / 2 10.546 1 / 2 10.408 2 / 2 8.006 5 / 6 9.510

037 scissors 2 / 2 10.229 0 / 2 – 1 / 2 9.243 3 / 6 10.076 2 / 2 8.465 1 / 2 9.638 2 / 2 8.477 5 / 6 8.891

006 mustard bottle 1 / 2 9.476 0 / 2 – 1 / 2 10.479 2 / 6 10.201 2 / 2 8.433 0 / 2 – 2 / 2 9.445 4 / 6 8.939

024 bowl 1 / 2 11.101 0 / 2 – 2 / 2 9.149 3 / 6 9.161 0 / 2 – 1 / 2 9.720 2 / 2 13.692 3 / 6 12.447

040 large marker 2 / 2 10.707 0 / 2 – 2 / 2 9.314 4 / 6 10.010 2 / 2 9.419 1 / 2 15.882 2 / 2 13.537 5 / 6 12.041

003 cracker box 0 / 2 – 0 / 2 – 0 / 2 – 0 / 6 – 1 / 2 11.925 0 / 2 – 1 / 2 12.989 2 / 6 11.596

052 extra large clamp 2 / 2 14.533 1 / 2 9.562 2 / 2 9.680 5 / 6 11.599 2 / 2 14.521 2 / 2 13.460 1 / 2 36.778 5 / 6 13.103

008 pudding box 2 / 2 10.098 0 / 2 – 2 / 2 9.037 4 / 6 9.567 2 / 2 8.668 0 / 2 – 2 / 2 9.825 4 / 6 9.247

010 potted meat can 1 / 2 9.919 0 / 2 – 2 / 2 11.063 3 / 6 10.493 2 / 2 8.442 0 / 2 – 2 / 2 8.943 4 / 6 8.693

021 bleach cleanser 2 / 2 10.355 1 / 2 12.233 0 / 2 – 3 / 6 10.311 2 / 2 8.771 0 / 2 – 2 / 2 10.997 4 / 6 9.884

total 15 / 20 10.784 4 / 20 11.134 14 / 20 9.678 33 / 60 10.357 17 / 20 9.774 6 / 20 12.031 18 / 20 10.387 41 / 60 10.373

Table 7. The pilot study results of subject 2. We present the results separately for the right-hand handovers (top), the left-hand handovers

(middle), and overall (bottom). We report both the success rate (“succ.”) and the completion time (“time”). Our method outperforms

GA-DDPG [18] in the success rate.

ure shows the user’s ranking with the statements queried in

the questionnaire. For each statement, a user can rank their

agreement level with one of the five options: “Strongly dis-

agree” (1), “Disagree” (2), “Neither agree or disagree” (3),

“Agree” (4), and “Strongly agree” (5) (see the color codes

in Figs. 10 and 11). The length of each color bar denotes

the count of the users. For each method, the statements are

further grouped into two subfigures, where a higher agree-

ment score indicates a better performance (top), and a lower

agreement score indicates a better performance (bottom).

Overall, our method receives higher agreement scores

over GA-DDPG [18] for the statements “The robot could

hold the object stably once taking it over from my hand.”

(i.e., (5,4,4,4,4,3) versus (5,4,3,3,3,2)) and “The robot was

able to adapt its behavior to different ways of how I

held the object for handover.” (i.e., (5,5,5,4,4,3) versus

(5,4,3,3,3,2)). This is congruent with our simulation eval-

uation results that our method can grasp objects more ro-

bustly by finding good pre-grasp poses around the object.

This was also reflected in participants’ comments. One said



Figure 9. We conduct a user evaluation with 6 users by allowing the users to perform handovers freely. The images depict sequences (from

left to right) of different users handing over a variety of objects to the robot.

our method “tends to explore more diverse grasp”, “was

much better at aligning the grasp” and “adjusts behavior

for different objects in different poses” when compared with

GA-DDPG. One pointed out that sometimes GA-DDPG

“grasped from the tip of the object”. The interpretability

of the robot’s motion was also acknowledged by their com-

ments, e.g., it “[was] safe and interpretable at all times” and

“felt like we understood each other”. Surprisingly, the users

favor GA-DDPG [18] more when it comes to safety related

metrics, e.g., for the statement “I felt safe while the robot

was moving.” ((5,4,3,3,2,2) for ours versus (5,5,4,4,3,3)

for GA-DDPG [18]) and “The robot was likely to pinch my

hand.” ((1,2,2,3,4,4) for ours versus (1,2,2,2,2,3) for GA-

DDPG [18]). This can be attributed to GA-DDPG’s ten-

dency to grasp from the grasp points closest to the robot,

and hence it often keeps a safe distance from the human

hand. For our method, several users felt the robot hand

pushing too much during grasping. One said it was “flex-

ible in grasp selection, but may be too close to my finger”.

Another said “the forward movement ... put the gripper

fairly close to me”. This can potentially be addressed by

incorporating force feedback in the grasping motion as well

as taking gripper hand distance into account during train-

ing. The majority of participants agreed that the timing

of our method is more appropriate, commenting the “han-

dover time was pretty seamless” and “didn’t have to wait

too long”.

Although the main objective in the user study was to let

users interact freely with the system in a non-standardized

manner, we additionally evaluate the user study quantita-

tively. We report the success rate and approach time (i.e.,

from the robot starting to move to grasp completion). Our

method still compares favorably to GA-DDPG with a higher

success rate (88.9% vs. 80.0%) and a shorter approach time

(6.40±2.27s vs. 7.48±2.64s). The better timing was noted

by the majority of participants, who commented that the

“handover time was pretty seamless” and “didn’t have to

wait too long”. Interestingly, we observed in our user study

that natural H2R handovers are less susceptible to grasping

failures, since the human partner would often help by ag-

ilely adjusting the object pose in the last mile to ensure a

successful grasp.



I felt safe while the robot was moving.

The robot could take over the object with appropriate timing.

The robot could hold the object stably once taking it over from my hand.

The robot was able to adapt its behavior to different ways of how I held the object for handover.
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Figure 10. User’s ranking with each statement for GA-DDPG [18] in the user evaluation. Each color denotes a different a degree of

agreement. The length of the bar denotes the count of the users. For each bar, the center count of “Neither agree or disagree” is aligned

with 0 in the horizontal axis. In the top figure, a higher agreement score (orange) indicates a better performance, while in the bottom figure,

a lower agreement score (green) indicates a better performance.

I felt safe while the robot was moving.

The robot could take over the object with appropriate timing.

The robot could hold the object stably once taking it over from my hand.

The robot was able to adapt its behavior to different ways of how I held the object for handover.
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There were times when I felt the robot was moving too aggressively.

Strongly disagree Disagree Neigher agree or disagree Agree

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Figure 11. User’s ranking with each statement for our method in the user evaluation. Each color denotes a different a degree of agreement.

The length of the bar denotes the count of the users. For each bar, the center count of “Neither agree or disagree” is aligned with 0 in the

horizontal axis. In the top figure, a higher agreement score (orange) indicates a better performance, while in the bottom figure, a lower

agreement score (green) indicates a better performance.
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