
Command-driven Articulated Object Understanding and Manipulation
Supplementary Material

Ruihang Chu1 Zhengzhe Liu1 Xiaoqing Ye2 Xiao Tan2

Xiaojuan Qi3* Chi-Wing Fu1 Jiaya Jia1,4
1CUHK 2Baidu Inc. 3HKU 4SmartMore

In this document, we first present the detailed experiment
settings in Sec. A. We then provide additional experimental
results in Sec. B to extensively demonstrate the capability of
our Cart. More visualization results are shown in Sec. C and
discussions are given in Sec. D. We recommend reviewers to
watch the attached video that exhibits animated manipulation
procedures.

A. Detailed Experiment Setups
Network architecture. Following CSC [1], we employ the
same Sparse 3D U-Net as the backbone of Seg-Net. As
Seg-Net is used for the structure-agnostic part segmentation,
which is difficult, we observe that using other backbones will
produce inferior performance. For the three prediction heads
of Seg-Net, each consists of two MLP layers, the first of
which is followed by batch normalization and ReLU. In Art-
Net, we employ a PointNet++ [5] backbone (the multi-scale
grouping paradigm) to extract per-point features.

Dataset statistics. In Table 4, we list the number of ob-
ject instances for each object category in our benchmark.
The cabinet, oven, and laptop categories are from the
Shape2Motion [6] dataset, and others come from the PartNet-
Mobility [7] dataset. To stabilize network training, we clean
up the samples by ignoring the motion of extremely small
object parts, which are beyond the capacity of the models.
For example, the control button of a microwave is too small
to localize.

Implementation details. We build our models using Py-
Torch and train one model per object category. Before feed-
ing point clouds into the network, we follow the common
3D segmentation pipeline [1] to adopt data augmentation
strategies for Seg-Net. Yet, no augmentation operation is
employed to train Art-Net. For all experiments, the model is
trained on four NVIDIA 2080Ti GPUs for 10k steps, with
a batch size of 4×8. We use the default AdamW optimizer
with an initial learning rate of 0.01. At the Seg-Net inference
stage, the sphere radius r for part clustering is set to 2 mm.
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Num.
cabinet oven laptop eyegla micro fridge stapler table storage

train 25 29 71 50 10 38 18 86 36
val 2 2 5 5 2 2 2 8 3
test 3 3 8 10 4 4 3 12 6

Table 4. Data statistics. On each object category, we list the number
of object instances for training, validation, and testing, respectively.

Method cab ove lap eye mic fri sta tab sto
RPM-Net [8] 93.2 100 100 100 100 100 100 93.7 100
ANCSH [4] 97.4 100 100 100 100 100 100 98.0 100
Ditto [3] 98.9 100 100 100 100 100 100 99.2 100
Cart (Ours) 99.2 100 100 100 100 100 100 99.2 100

Table 5. Comparison on mean accuracy of the predicted joint types
(i.e., revolute or prismatic) on nine object categories.

Method cab ove lap eye mic fri sta tab sto
ANCSH [4] - 0.04 0.10 0.10 0.05 - 0.06 - 0.05
Cart (Ours) 0.04 0.02 0.02 0.05 0.02 0.03 0.03 0.03 0.03

Table 6. Comparison on prediction accuracy of the articulation
states. It is measured by the normalized distance (or angle) errors.

When training models on synthetic datasets [6, 7], we ran-
domly select a point from the object’s point cloud and use
its coordinate to denote the part to operate. In case of real
robotic scenarios equipped with RGB-D cameras, we could
specify a 3D point by picking its projection coordinates
in the 2D image. Then, the associated 3D position in the
camera frustum can be found using the depth information.

B. Additional Experiments
Joint type prediction. Table 5 shows the comparison results
of joint type prediction. Since this task can be easily solved
by a binary classification, all compared methods can accu-
rately identify the motion type by analyzing object geometry.
Our Cart attains the best performance as well.

State prediction. A key factor to our test-time state adapta-
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Lp2a cab ove lap eye mic fri sta tab
✘□ 0.05 0.04 0.02 0.03 0.03 0.05 0.03 0.05
✔□ 0.04 0.02 0.02 0.03 0.03 0.04 0.02 0.04

Table 7. Effects of the point-axis distance loss, denoted as Lp2a. It
effectively reduces position errors of the predicted revolute axis.

tion is that Seg-Net should accurately predict the articulation
state for each object part. Otherwise, we cannot reliably
measure the state difference between the manipulated shapes
and ground truths and refer to it for motion adjustment. As
shown in Table 6, Seg-Net attains satisfactory performance
and yields fewer prediction errors compared to ANCSH [4].

Ablation on loss Lp2a. For joint parameter prediction, we
apply an additional point-axis distance loss to supervise the
position of the revolute axis, as illustrated in Sec. 4.2. This
loss jointly considers the original point coordinates and the
predicted point-to-axis projections, thus strengthening the
constraint on axis position. The results in Table 7 demon-
strate that it brings consistent performance improvement.

Iteration rounds of TTSA. Fig. 9 shows articulation state
errors in the process of Test-time State Adaptation (TTSA).
TTSA gradually adjusts the amount of movement to reduce
the final state errors. It typically converges in 70-80 rounds.

Failure cases. Due to our segment-then-prediction paradigm,
we observe that inaccurate part segmentation may easily lead
to manipulation mistakes. Fig. 10 shows two typical failure
cases of our method. The upper region shows that Cart may
fail to separate multiple spatially-close parts of the object
with complex structure. Thus, the manipulated shape differs
from the ground truth. At the bottom region, Cart cannot dis-
criminate the front and back faces of a microwave, resulting
in two lid predictions (denoted by blue and green colors).

The fundamental reason is due to the inadequate visual
observation, since Cart takes only one single point cloud
without texture information. Future work would enhance the
visual input, e.g., by combing 2D RGB images, to improve
the part discovery performance. This strategy has also been
mentioned in Sec. 6 of the main paper.

C. More Visualizations
We show quantitative visualization results of Cart on

various object categories in Fig. 11. Taking as input a point
cloud with an arbitrary articulation state, Cart can infer the
inherent articulation structure and manipulate the specified
part(s) to the target state, according to the command.

D. Discussions
The choice of template-based command. In this work,
we opt for template-based commands over human natural
language instructions to facilitate easy implementation and
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Figure 9. Errors of the articulation states at each test-time adapta-
tion round. We conduct experiments on three object categories.
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Figure 10. Failure cases. The red boxes denote the main difference
between our predictions and ground truths.

precise manipulation control. As the command space is
determined by the states nodes, adjusting state node number
K can support fine-grained commands. For instance, with
K=30, our approach can manipulate articulated objects with
the minimum precision unit of 3 degrees. It’s far beyond the
representation accuracy of conventional NLP models.

Limitations. Occlusion issues are typical for models with
single or partial observations, potentially giving rise to in-
accurate segmentation results. As discussed in the earlier
failure case, this may compromise the predictions of articula-
tion parameters and ultimately hinder the manipulation. To
mitigate this issue, we could leverage the active perception
technique to enhance visual observations. Additionally, in-
corporating image input into our framework is another way,
which could leverage the advances in 2D articulation recog-
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Figure 11. Visualizing how Cart enables object manipulations. Distinct object parts have different colors. The dots in the leftmost column
denote the parts chosen to be operated.



nition technology, e.g., OPD [2], to improve the articulation
estimation.

Future work. There are two primary directions for work ex-
tension. The first direction is to incorporate more convenient
interaction ways into our framework to facilitate human-
instructed manipulation. Specifically, driven by the trans-
formative impact of large language models like ChatGPT,
intergrating their APIs might enable robots to understand
complex human instructions and operate the objects accord-
ingly. Secondly, we should take into account the physical
action affordance (e.g., joint friction) to better adapt our
approach to real-world robot tasks.
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