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1. Supplemental Document
In this supplementary document, we provide supporting

material including additional results, implementation de-
tails, ablation experiments, and further analysis in support
of the findings from the main text. We organize this material
as follows:

• Section A: Data, training, and evaluation details.

• Section B: Additional ablation studies on manipulating
network and encoding parameters.

• Section C: Additional reconstruction results and exam-
ination of challenging imaging settings.

• Section D: Additional validation on simulated data
with evaluation of motion estimates.

• Section E: Applications to depth and image matting.

A. Implementation Details
Long-Burst Data. We acquire long-burst data through a
custom app built on the AVFoundation camera framework
for iOS 16. While the vanilla AVFoundation framework
offered a default method to capture burst or bracketed se-
quences, it was limited to only four frame sequences with
significant overhead between captures, necessitating cus-
tom streaming code to save a longer continuous sequence
of RAW data. A restriction we could not lift, however, is
the inability to stream RAW captures from multiple cam-
eras simultaneously. If this were possible, one could po-
tentially use parallax and focus cues between two synchro-
nized camera streams – for example the wide and ultra-wide
cameras – to further improve reconstruction in the over-
lap of their fields of view. During capture, we record the
following: Bayer CFA RAWs (42 frames 4032×3024px),
processed RGB images (42 frames 1920×1440px), depth
maps (42 frames 320×240px), frame timestamps, ISO, ex-
posure time, brightness estimates, black level, white level,
camera intrinsics, lens distortion tables, device acceleration
estimates (∼200 measurements at 100Hz), device rotation
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Figure 1. The bayer color filter array on a camera sensor produces
a spatially ”mosaicked” RAW image, where each 2×2 block con-
tains a blue, red, and two green pixels. Rather than mix channel
content to ”demosaick” the image, we separate these channels into
three planes and only linearly interpolate gaps between measured
pixels, preserving the original RAW values.

estimates (∼200), and motion data timestamps (∼200). To
preserve measured RAW values, we convert the single chan-
nel Bayer CFA images to three channel RGB volumes as
shown in Fig. 1, linearly interpolating to fill missing values.
To account for lens shading effects in bright scenes we also
estimate a shade map with the help of a simple diffuser and
uniform light source, illustrated in Fig. 2. We note that ne-
glecting to compensate for lens shading can disrupt depth
estimation in the corners of the image as matching pixels
no longer have uniform brightness between frames.

Training. We sample 1024 points (u, v) per iteration of
training, projecting these to 42×1024 points in the image
stack I(u, v, N), corresponding to 1024 points per frame.
We perform 256 iterations per epoch, for 100 epochs of
training with the Adam optimizer [4] with betas (0.9, 0.99)
and epsilon 10−15. We exponentially decay learning rate
during training with a factor of 0.98 per epoch. Training on
a single Nvidia A100 takes approximately 15 minutes.

Evaluation. To generate depth maps we sample D(u, v) at
a grid of (H, W)= (1920, 1440) points (u, v)∈ [0, 1]. To re-
duce noise introduced by the stochastic training process we
median filter this result with kernel size 13 before visual-
ization. For depth evaluation, we use relative absolute error
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Figure 2. (a) Lens shading is an effect caused by the geometry
of the camera lens assembly, where regions close to the edge of
the image sensor receive less total light than the center. (b) Cam-
era manufacturers calibrate for this by capturing what should be a
uniformly bright scene and (c) generating a shade map to compen-
sate for the observed fall-off in brightness in the image.

L1-rel and scale invariant error sc-inv metrics, that is

L1-rel(d, d̂) =
1
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∑
u.v

|d(u, v)− d̂(u, v)|
d̂(u, v)

,

and

sc-inv(d, d̂) =

√
1

HW

∑
u,v

δ(u, v)2 − 1

(HW)2
(
∑
u,v

δ̂(u, v))2

δ(u, v) = log(d(u, v))− log(d̂(u, v)),

which are often used in the monocular depth estimation lit-
erature [7] to compare approaches with varying scales and
representations of depth. For methods such as MiDaS and
RCVD we first convert inverse depth to depth before apply-
ing these metrics. We purposely avoid using photometric
loss or reprojection error as comparison metrics [2] for sim-
ilar arguments as discussed in Gao et al. [3], where

reprojection error =
1

HW

∑
u,v,N

|I(u, v)− I(uN, vN, N)|.

Frames in a long-burst contain >90% overlapping scene
content, and so many non-physical solutions for depth will
produce identical reprojection error as compared to more
geometrically plausible depth maps. This is illustrated in
Fig. 3, where by “tearing” the image – compressing patches
of similar colored pixels from the reference frame – the non-
physical depth incurs no additional photometric penalty,
and so results in an identical reprojection error to a far more
qualitatively plausible depth reconstruction.

B. Additional Ablation Experiments
Encoding. In this work we use the multiresolution hash
encoding γD to directly control what spatial information
our implicit depth representation fD has access to during
training. This in turn controls the scale of depth features
we reconstruct, and presents a similar problem to choosing

Scene Depth A Depth B

Figure 3. In this example both Depth A and B produce identical
reprojection error, but where Depth A models smooth geometry
which warps the image between frames to model parallax, Depth
B performs a brute-force mapping of individual pixels in the ref-
erence frame to points with similar values in the image stack.

the scale factors in an image pyramid [1]. As we see in
Fig. 4, increasing the number of levels LγD and effective
max resolution NγD

max increases the spatial frequency of re-
constructed depth features. Scenes such as Branch contain
both high-frequency image and depth content, thin textured
needles, and are best reconstructed by a fine resolution grid
with LγD = 16. The Desk Gourds, however, have small
image features in the patterns on the gourds, but relatively
low-frequency depth features. Setting LγD = 16 allows the
network to overfit to these features and bleed image tex-
ture into the depth reconstruction. We select LγD = 8 as a
compromise between these imaging settings, but in practice,
different scenes have different optimal encoding parameters
for maximum reconstruction quality. We find hash table
size T γD significantly easier to tune, as choosing an overly
large table size primarily affects model storage size, rather
than reconstruction quality. We thus choose T γD = 214, the
smallest table size which does not lower the detail of depth
reconstruction, as shown in Fig. 5.
Depth Model. The main adjustable parameter in our for-
ward model is the plane regularization weight αP. This
plane regularization affects depth reconstruction bidirec-
tionally, regions with little parallax information are pulled
towards the plane to remove spurious depth estimates, but
in order to minimize depth offset, the plane is also pulled
towards the reconstructed foreground objects. The effect of
this can be seen in Fig. 6, where for very low αP ≤ 10−5

this plane does not align with the foreground depth, and in-
stead drifts into the background, causing a discontinuity in
the reconstruction. Conversely, for large αP ≥ 10−3, this
regularization is so strong that the plane begins to cut into
the foreground objects, flattening regions with low parallax
information. We find αP =10−4 to work well for a wide
range of scenes, “gluing” the depth plane to the limit of re-
constructed objects. We note that in scenes such as Desk
Gourds, and as we will see later with synthetic data, this
plane accurately reconstructs the real geometry of the back-



ground. However, for many settings it is more akin to a
segmentation mask than depth, designating the area which
we cannot reconstruct using parallax information.
Motion Model. We use a Bézier curve model to represent
translation between frames, as natural hand-tremor draws
a continuous low-velocity path during capture. By limit-
ing the number of control points Nc in this model we can
enforce smoothness constraints on this motion, the effects
of which are illustrated in Fig. 7. Not surprisingly, using
too few control points does not allow us to faithfully model
camera motion and results in blurry image reconstruction
and inconsistent depth estimates. We thus choose the small-
est number of control points which leads to successful im-
age and depth reconstruction. We note that while for Desk
Gourds reconstruction succeeded with Nc = 42, for many
scenes setting Nc ≥ 42 leads to very unstable training as
the over-defined motion model can generate erratic high-
velocity motion between frames.

C. Additional Reconstruction Results
Challenging Imaging Scenarios. Given the fundamental
building blocks of our approach, namely that it performs
multi-view depth estimation through ray reprojection, some
scenes will naturally be more difficult to reconstruct than
others. As shown in Fig. 8, each of these scenarios presents
its own set of challenges and direction of study. In the Dy-
namic scene, we fail to reconstruct accurate depth for the
majority of the plant leaves as they undergo deformation far
larger than the parallax effects we observe in the long-burst.
Our forward model has no way to model this deformation,
and it is notoriously difficult to separate the effects of ob-
ject motion from camera motion. The Textureless and Dis-
tant scenes present two sides of a similar problem, insuffi-
cient parallax information. While we are able to reconstruct
the plant in Textureless, the textureless planter provides no
multi-view information from which to estimate depth ex-
cept for along its edges, which we can track relative to the
motion of the background. The church in Distant is so far
from the camera that it exhibits only fractions of pixel in
disparity over the entire long-burst. In both these scenarios
we need a mechanism to aggregate information in image
space to make up for the lack of parallax. In Textureless this
would be in-painting the planters depth based on its edges,
and in Distant we would need to look at the deformation
of larger image patches to estimate sub-pixel motion. The
Thin Structures reconstruction is partially successful, as in
the foreground region we are able to track and reconstruct
the depth of the thin orange mesh, but breaks down when it
begins to overlap with the traffic cone. We suspect this is
because our forward model is a single-layer RGB-D repre-
sentation, with no explicit way to model for occlusions. In
the region of the traffic cone is has to decide between recon-
structing the cone or the mesh in front of it in the long-burst

I(u, v, N) data, not both. Here, a layered depth represen-
tation could potentially solve this, but greatly increases the
complexity of the problem as we would now need to learn
an alpha map for each frame N to sample these layers. For
the Very High Dynamic Range scene, we have specular re-
flections three orders of magnitude brighter than the shad-
owed portions of the statue. While using the fixed auto ex-
posure and ISO settings we are able to reconstruct a large
portion of the statue body with our RAW data. To recon-
struct all the regions of the scene, including the dimly-lit
body, our model could potentially be augmented to incor-
porate bracketed image data with varying exposure, similar
to Mildenhall et al. [5], and perform joint HDR image vol-
ume and depth reconstruction. The Lens Blur scene shows
a loss in reconstruction quality due to portions of the scene
being blurred by a shallow depth of field from the camera.
Depth-from-defocus cues [8] could potentially help regular-
ize reconstruction in these areas which are otherwise devoid
of fine image features. Lastly, the Translucent and Highly
Reflective settings both violate view consistency. Namely,
changes in pixel colors can no longer be attributed solely
to parallax or camera motion, and can be caused by seeing
through or around the objects. We further discuss the recon-
struction of non-lambertian objects in the next section.

Non-Lambertian Reconstruction. While we focus on
the reconstruction of primarily lambertian scenes – matte,
diffusely-reflective objects – non-lambertian scenes provide
an interesting set of both imaging challenges and opportu-
nities. We first divide this setting into two categories: local
reflections and distant light sources, illustrated in Fig. 10.
In the first setting, sampled light paths and colors can dras-
tically change for even small view variations. As photomet-
ric matching tries to match reflected content, which does
not follow the parallax motion of the reflective object itself,
this produces erroneous depth estimates for objects such as
the copper pot in Fig. 10 (a). With a distant light source,
however, small changes in view angle result in the same ap-
parent specularities as the path from the camera center to
the illuminator remains connected. These specularities thus
act as image texture, and exhibit the same parallax effects
as the surface of the object. As seen in Fig. 10 (b) and the
Tiger scene, this does not disrupt depth reconstruction. This
finding, that specularities from distant light sources act as
object texture and local reflections do not, points towards
an avenue of work in lighting separation and reflection re-
moval. Regions which do not fit a static RGB-D model and
incur large photometric penalties regardless of their depth,
could be separated into view-dependent texture plus reflec-
tion components for later manipulation.

Small Camera Motion. As hand shake is a naturally ran-
dom process, long-burst captures have varying effective
stereo baseline. While on average we can expect 5-6 mil-
limeters of baseline [2], if we are unlucky – e.g. the user is
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Figure 4. Ablation study on the effect of the number of levels LγD, and effective max resolution NγD
max, in the multiresolution hash encoding

γD on reconstruction. Here, given a scale factor of
√
2 between levels, LγD = 2, 4, 6, 8, 16 correspond to NγD

max = 16, 32, 128, 2048. The
qualitatively best reconstructions are highlighted with a dashed border.
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Figure 5. Ablation study on the effect of hash table size T γD on reconstruction quality. Selected T γD is highlighted with a dashed border.
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Figure 6. Ablation study on the effects of regularization weight αP on reconstruction quality. Selected αP highlighted with a dashed border.
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Figure 7. Ablation study on the effect of the number of chosen control points N T
c =N R

c on reconstruction quality, with image reconstruc-
tions I(u, v) and estimated motion paths plotted below. The selected number of control points is highlighted with a dashed border.
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Figure 8. Depth reconstruction results for a set of challenging imaging scenarios. Not visible is the large motion of leaves in the Dynamic
scene, captured during high wind. Areas of interest are highlighted with a dashed border.
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Figure 9. Depth reconstruction results for long-bursts captured with normal (approximately 5 millimeter maximum effective stereo base-
line) and minimal (on the scale of a millimeter) hand shake motion. Major depth artifacts are highlighted with a dashed border.
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Figure 10. (a) Objects which reflect local scene content, in this
example a mirror-finish copper pot reflecting the carpet around it,
can completely break view consistency assumptions used for depth
reconstruction. Even small view angle changes result in light paths
which sample completely inconsistent colors in the surrounding
environment. (b) In contrast, objects with specularities caused by a
light source at effectively infinity, in this example polished ceramic
reflecting sunlight, do not fully break view consistency.

not taking a breath and is rigidly holding the phone with two
hands close to their body – this motion can be as small as a
millimeter. Illustrated in Fig. 9, we see how our end–to-end
camera pose estimation still converges in the minimal base-
line setting, and how we are able to produce useable – albeit
blurrier – depth estimates. This is in contrast to HNDR [2],
which uses the imperfect ARKit pose estimates for repro-
jection and produces major artifacts because of it, mapping
incorrect pixel matches to spurious depths solutions. This
demonstrates the value of continuous pose refinement, as
mobile SLAM algorithms and COLMAP [6] do not produce
ground truth poses.
Additional Results. Fig. 11 provides additional qualita-
tive comparisons of our proposed approach to a wide set
of baseline methods. This includes the four target objects
used to demonstrate object reconstruction in the main text,
prefixed with Obj-. The visualizations also reflect the chal-
lenges in evaluating methods purely from depth maps, as
geometric inconsistencies that are apparent in the mesh pro-

jections – such as the distorted arms of Obj-Ganesha – are
much harder to identify in these 2D visualizations. In addi-
tion to these objects, we include 3 scenes Leopardy, Bush,
and Houseplant, which demonstrate successful reconstruc-
tion with deceptive image features, small depth features,
and large field of view respectively. Of particular note is
how we are able to reconstruct the needles of the Bush scene
and individual leaves of Houseplant, where other methods
blend features at different depth levels together.

D. Synthetic Evaluation

Setup. To further validate our approach we use the high-
fidelity structured light object scans we acquired for quanti-
tative evaluation to generate simulated long-burst captures.
Illustrated in Fig 12, we apply a Voronoi color texture to the
surface of these meshes, and place them in front of a tilted
background plane with an outdoor image texture. We add
depth-of-field effects and match camera intrinsics to our real
captures – using the ARKit poses captured by the software
from Chugunov et al. [2] to generate realistic hand tremor
motion paths – and render frames at 16-bit color depth with
Blender’s Eevee engine. This synthetic data allows us to
not only validate the fidelity of our object reconstructions,
but also our estimated camera motion paths, for which we
cannot otherwise get ground truth during ordinary captures.

Assessment on Synthetic Data. We find that for this syn-
thetic data, in the absence of noise, lighting changes, and
other imaging non-idealities, we are able to recover nearly
ground truth reconstructions of both the objects and back-
ground planes. This supports our plane plus offset depth
model, which fits the simple plane to the out-of-focus back-
ground content instead of generating spurious depth es-
timates for regions without reliable parallax information.
Though the colorful object textures make single-view depth
estimation visually difficult, as illustrated by artifacts in the
MiDaS reconstructions, these high-contrast cues allow our
method to reconstruct even tiny features such as the tusks
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Figure 11. Reconstruction on 7 additional scenes for our method and a mix of learned, purely multi-view, and mixed depth estimation
methods. Given the mix of depth representations, results are re-scaled by minimizing relative mean square error.
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Figure 12. Depth reconstruction and motion estimation results for a set of simulated textured objects with realistic hand-tremor motion.
Motion estimates are re-normalized and overlaid to demonstrate the accuracy in estimated camera trajectory to ground truth data.

of the Synth-Ganesha. This validates that even with small
camera motion, given sufficient image texture we converge
on geometrically correct solutions. In Fig. 12 we also see
how the camera motion estimates converge close to ground
truth as our method jointly refines depth and camera trajec-
tory estimates during training.

E. Depth and Image Matting
Forward Model Decomposition. In the proposed plane
plus offset depth model, regions that do not generate suf-
ficient parallax information are pulled towards the plane by
the regularization term R. While we cannot recover mean-
ingful depth from multiview in these regions, they prove
useful for scene segmentation and editing. Illustrated in
Fig. 13 (a), by masking what parts of the image produce
negligible depth offset, we are able to cleanly segment the
tiger statue in Scene A from its background. In Fig. 13 (b)
we then superimpose this masked image over Scene B, a

separately captured tree-covered street. We run Scene B
through MiDaS to hallucinate the depth of the background
trees, and overlay this with our geometrically-estimated
depth of the tiger to produce a fused depth representation. In
this way we leverage multiview information where we have
it, and learned image priors where we do not. In Fig. 13 (c)
we see an advantage of using this plane separation tech-
nique for segmentation over depth thresholding. As the
floor under the dragon figure extends both in front of and
behind the figure itself, setting a depth cutoff will always
either miss a part of the figure, or include the area around it.
Whereas as our plane here represents the depth of the floor,
we can threshold the depth offset just like in Fig. 13 (a) to
recover a high-quality mask of the object. Thanks to being
based on depth rather than image features, this approach has
no problems with the visual ambiguity of the dragon and its
background, which both contain high-frequency black and
white textures.
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Figure 13. Image and Depth Matting. Example of scene editing enabled by our plane plus offset forward model. We can (a) threshold the
depth offset component d(u, v)− dP to recover a mask of the object in focus and then (b) superimpose it over a new scene. (c) This works
even for visually ambiguous scenes where simple depth thresholding fails.
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