
Supplementary Material
A. Proofs

We first borrow the result from [11].

Proposition 1. For the case of VP-SDE or DDPM sampling whose the forward diffusion is given by

xt =
√
ᾱ(t)x0 +

√
1− ᾱ(t)z, z ∼ N (0, I), (22)

p(x0|xt) has the unique posterior mean at

x̂0 := E[x0|xt] =
1√
ᾱ(t)

(xt + (1− ᾱ(t))∇xt log pt(xt)). (23)

In our case, Proposition 1 holds for both the reverse conditional probability p(x0|xt) as well as p(k0|kt), as they are
both constructed from DDPM. Given the posterior mean x̂0, k̂0 that can be computed efficiently (i.e. via one forward pass
through the neural network) during the intermediate steps, our proposal is to find a tractable approximation for p(y|xt,kt).
Specifically, we propose the following approximation

p(y|xt,kt) ≃ p(y|x̂0, k̂0), where x̂0 := E[x0|xt] = Ex0∼p(x0|xt) [x0] (24)

k̂0 := E[k0|kt] = Ek0∼p(k0|kt) [k0] (25)

Now, to quantify the approximation error induced by eq. (24),(25), the following definition is useful.

Definition 1 (Jensen gap [19,50]). Let x be a random variable with distribution p(x). For some function f that may or may
not be convex, the Jensen gap is defined as

J (f,x ∼ p(x)) = E[f(x)]− f(E[x]), (26)

where the expectation is taken over p(x).

Using the Jensen gap defined in Definition 1, we attempt to achieve a meaningful upper bound on the gap. First, we have
the following

Proposition 2 (Jensen gap upper bound [19]). Define the absolute cenetered moment as mp := p
√

E[|X − µ|p], and the mean
as µ = E[X]. Assume that for α > 0, there exists a positive number K such that for any x ∈ R, |f(x)− f(µ)| ≤ K|x−µ|α.
Then,

|E[f(X)− f(E[X])]| ≤
∫
|f(X)− f(µ)|dp(X) ≤ K

∫
|x− µ|αdp(X) ≤Mmα

α. (27)

The following lemmas from [11] are also useful.

Lemma 1. Let ϕ(·) be a univariate Gaussian density function with mean µ and variance σ2. There exists a constant L such
that ∀x, y ∈ R,

|ϕ(x)− ϕ(y)| ≤ L|x− y|, (28)

where L = 1√
2πσ2

exp (− 1
2σ2 ).

Lemma 2. Let ϕ(·) be an isotropic multivariate Gaussian density function with mean µ and variance σ2I . There exists a
constant L such that ∀x,y ∈ Rd,

∥ϕ(x)− ϕ(y)∥ ≤ L∥x− y∥, (29)

where L = d√
2πσ2

e−1/2σ2

.



Theorem 1. Under the same conditions in [11], we have

∇xt log pt(y|xt,kt) ≃ ∇xt log p(y|x̂0(xt), k̂0(kt))

∇kt
log pt(y|xt,kt) ≃ ∇kt

log p(y|x̂0(xt), k̂0(kt)).

Proof. The proof of the theorem is inspired by and builds upon [11]. We first note that xt,kt ∀t ∈ [0, 1] are independent
(See Fig. A.1). Further, y and xt are conditionally independent on x0; y and kt are conditionally independent on k0. Then,
we have the following factorization

p(y|xt,kt) =

∫
p(y|x0,k0)p(x0|xt)p(k0|kt) dx0dk0 (30)

= Ex0∼p(x0|xt),k0∼p(k0|kt)[f(x0,k0)], (31)

where f(x0,k0) = h(k0∗x0), with h(µ) denoting the density function of an isotropic multivariate Gaussian density function
with mean µ, and variance σ2I . Our proposal is to use the Jensen approximation

p(y|xt,kt) ≃ p(y|E[x0,k0]) = p(y|x̂0, k̂0), (32)

where the last equality comes from the independency of x0 and k0. Now we derive the closed-form upper bound of the
Jensen gap. For simplicity in exposition, let us define K0x0 ≡ k0 ∗ x0,≡X0k0, where K0,X0 are block Hankel matrices
that represent the convolution operation in matrix multiplication. Further, we denote ¯∥K0∥ := Ek0∼p(k0|kt)[∥K0∥]. Our
Jensen gap reads

J (f, p(x0|xt)p(k0|kt)) = |Ex0,k0
[f(x0,k0)]− f(Ex0

[x0],Ek0
[k0])| (33)

≤ |Ek0,x0
[f(x0,k0)]− Ek0

[f(Ex[x0],k0)]|︸ ︷︷ ︸
1⃝

+ |Ek0
[f(Ex0

[x0],k0)]− f(E[x0],E[k0])|︸ ︷︷ ︸
2⃝

, (34)

with

1⃝ = |Ek0
[Ex0

[f(x0,k0)]− f(Ex0
[x0],k0)]| (35)

(a)
≤ Ek0

[∫
|h(k0 ∗ x0)− h(k0 ∗ x̂0)|dP (x0|xt)

]
(36)

(b)
≤ Ek0

[
d√
2πσ2

e−1/2σ2

∫
∥K0x0 −K0x̂0∥dP (x0|xt)

]
(37)

≤ Ek0

[
d√
2πσ2

e−1/2σ2

∥K0∥
∫
∥x0 − x̂0∥dP (x0|xt)

]
(38)

(c)
≤ Ek0

[
d√
2πσ2

e−1/2σ2

∥K0∥m1,x0

]
(39)

(d)
≤ d√

2πσ2
e−1/2σ2

∥K̄0∥m1,x0
, (40)

where (a) is from Proposition. 2, (b) is from Lemma. 2, and (c-d) are from the definitions. Moreover,

2⃝ ≤
∫
|h(k̂0 ∗ x̂0)− h(k0 ∗ x̂0)|dP (k0|kt) (41)

≤ d√
2πσ2

e−1/2σ2

∫
∥X̂0k0 − X̂0k̂0∥dP (k0|kt) (42)

≤ d√
2πσ2

e−1/2σ2

∥X̂0∥m1,k0
. (43)

Hence

J (f, p(x0|xt)p(k0|kt)) ≤
d√
2πσ2

e−1/2σ2
(
∥K̄0∥m1,x0 + ∥X̂0∥m1,k0

)
. (44)



where

m1,x0
:=

∫
∥x0 − x̂0∥dP (x0|xt) (45)

m1,k0 :=

∫
∥k0 − k̂0∥dP (k0|kt) (46)

We have derived that the approximation (32) has the Jensen gap upper bounded by (44). Finally, taking the derivative of the
log to (32), we have that

∇xt
log pt(y|xt,kt) ≃ ∇xt

log p(y|x̂0(xt), k̂0(kt))

∇kt
log pt(y|xt,kt) ≃ ∇kt

log p(y|x̂0(xt), k̂0(kt)).

Note that the approximation error from the Jensen gap approaches to zero as the noise level σ increase sufficiently.
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Figure A.1. Probabilistic graph of BlindDPS for blind deblurring.

B. BlindDPS

B.1. Imaging through turbulence

In terms of inverse problem solving, the tilt-blur model
is often used [5, 6, 49], as the model is simple but fairly
accurate. Specifically, we have

p(y|x0,k0,ϕ0) := N (y|k0 ∗ Tϕ0
(x0), σ

2I). (47)

For details in the forward model that is used for our exper-
iments, see Supplementary Section E. Note that the three
factors are all independent, i.e.

p(x0,k0,ϕ0|y) ∝ p(y|x0,k0,ϕ0)p(x0)p(k0)p(ϕ0).

Then, from Remark 1, we can again construct a system of
reverse SDEs (See Fig. B.1) analogous to the blind deblur-
ring case ((17),(18)):

dx = (−β(t)

2
x− β(t)[∇xt

log p(y|x̂0(xt), k̂0(kt), ϕ̂0(ϕt))

+ siθ∗(xt, t)])dt+
√

β(t)dw̄, (48)

dk = (−β(t)

2
k − β(t)[∇kt

log p(y|x̂0(xt), k̂0(kt), ϕ̂0(ϕt))

+ skθ∗(kt, t)])dt+
√
β(t)dw̄, (49)

dϕ = (−β(t)

2
k − β(t)[∇ϕt

log p(y|x̂0(xt), k̂0(kt), ϕ̂0(ϕt))

+ stθ∗(ϕt, t)])dt+
√
β(t)dw̄, (50)

where stθ∗ is the score function trained to model the distri-
bution of the tilt maps. Then, we can construct a similar
method as shown in Algorithm 2 based on ancestral sam-
pling analogous to Algorithm 1. Note that for solving imag-
ing through turbulence, we do not use the ℓ0 sparsity prior.
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Figure B.1. Probabilistic graph of BlindDPS for imaging through
turbulence.

Algorithm 2 BlindDPS — Imaging through turbulence

Require: N , y, α, {σ̃i}Ni=1

1: xN ,kN ,ϕN ∼ N (0, I)
2: for i = N − 1 to 0 do
3: ŝi ← siθ∗(xi, i)
4: ŝk ← skθ∗(ki, i)
5: ŝk ← stθ∗(ϕi, i)
6: x̂0 ← 1√

ᾱi
(xi +

√
1− ᾱiŝ

i)

7: k̂0 ← 1√
ᾱi
(ki +

√
1− ᾱiŝ

k)

8: k̂0 ← PC(k̂0)

9: ϕ̂0 ← 1√
ᾱi
(ϕi +

√
1− ᾱiŝ

t)

10: zi, zk, zt ∼ N (0, I)

11: x′
i−1 ←

√
αi(1−ᾱi−1)

1−ᾱi
xi +

√
ᾱi−1βi

1−ᾱi
x̂0 + σ̃izi

12: k′
i−1 ←

√
αi(1−ᾱi−1)

1−ᾱi
ki +

√
ᾱi−1βi

1−ᾱi
k̂0 + σ̃izk

13: ϕ′
i−1 ←

√
αi(1−ᾱi−1)

1−ᾱi
ϕi +

√
ᾱi−1βi

1−ᾱi
ϕ̂0 + σ̃izt

14: xi−1 ← x′
i−1 − α∇xi

∥y − k̂0 ∗ Tϕ0
(x̂0)∥2

15: ki−1 ← k′
i−1 − α∇ki

∥y − k̂0 ∗ Tϕ0
(x̂0)∥2

16: ϕi−1 ← ϕ′
i−1 − α∇ϕi∥y − k̂0 ∗ Tϕ0(x̂0)∥2

17: end for
18: return x0,k0,ϕ0

C. Detailed Ablation Studies
C.1. Diffusion prior for the forward model

Let us revisit the Bayes’ rule in the context of diffusion
models for posterior sampling in blind deconvlution:

∇xt
log p(xt,kt|y) = ∇xt

log p(y|xt,kt) +∇xt
log p(xt)

∇kt
log p(xt,kt|y) = ∇kt

log p(y|xt,kt) +∇kt
log p(kt).

We consider the case where we construct the diffusion prior
for the image x, but not for the kernel k. In fact, this setting



Algorithm 3 Diffusion Posterior Sampling — Uniform
prior

Require: N , y, αx, αk{σ̃i}Ni=1, λ, σinit

1: xN ∼ N (0, I)
2: kN ∼ GaussianKernel(σinit)
3: for i = N − 1 to 0 do
4: ŝi ← siθ∗(xi, i)
5: x̂0 ← 1√

ᾱi
(xi +

√
1− ᾱiŝ

i)

6: ki ← PC(ki)
7: zi ∼ N (0, I)

8: x′
i−1 ←

√
αi(1−ᾱi−1)

1−ᾱi
xi +

√
ᾱi−1βi

1−ᾱi
x̂0 + σ̃izi

9: xi−1 ← x′
i−1 − αx∇xi

∥y − ki ∗ x̂0∥2
10: Lk ← ∥y − ki ∗ x̂0∥2 + λℓ0(ki)
11: ki−1 ← ki − αk∇ki

Lk

12: end for
13: return x0,k0

is similar to the concurrent work of Levac et al. [33], where
the authors propose to use a score function only for the im-
age, and not for the parameters for the motion artifact gen-
erating forward model. Note that the blind forward model
setting here is considerably simpler than our method, since
the parameter κ to be estimated is a scalar. In this regard,
the authors propose to use a uniform prior for the unknown
parameter κ, which makes the gradient of the prior to be
simply 0, i.e. ∇κt

log p(κt) = 0. If we apply such uniform
prior to our setting, our discretized update rule reads

∇xi
log p(xi,ki|y) ≃ siθ∗(xi, i)−

1

σ2
∇xi
∥y − ki ∗ x̂0(xi)∥22

∇ki
log p(xi,ki|y) ≃ −

1

σ2
∇ki
∥y − ki ∗ x̂0(xi)∥22.

Additionally, similar to BlindDPS, one can further augment
sparsity to the kernel estimation by using e.g. ℓ0 regular-
ization. Combined with the ancestral sampling steps, we
arrive at Algorithm 3. Note that we chose Gaussian ker-
nel as an initialization, but other choices are also feasible.
The main difference between BlindDPS (Algorithm 1) and
Algorithm 3 comes from the the complexity of the priors
used. In order to quantify the performance gap, we chose
100 images from the FFHQ validation set, and compared
the result of Algorithm 3 against BlindDPS. We performed
grid search to find the optimal parameters αx, αk, λ, which
were set to αx = 0.3, αk = 0.3, and λ = 5.0. In addition,
to follow more closely to the method originally proposed
in [33], we also include the case where the sparsity prior is
set to zero by letting λ = 0.0, denoted as “Uniform prior”
in Table. C.2.

Representative results can be seen in Fig. 7, and quan-
titative results can be found in Table C.2. Clearly, uniform
prior far underperforms against the diffusion prior proposed
in this work. We can conclude that while simple priors such

Motion Gaussian

λ 0.0 0.1 1.0 5.0 0.0 0.1 1.0 5.0

MNC ↑ 0.929 0.956 0.958 0.959 0.996 0.997 0.996 0.997
MSE ↓ 0.004 0.002 0.002 0.002 0.000 0.000 0.000 0.000
PSNR ↑ 22.43 22.56 22.49 22.60 25.13 25.03 25.00 25.12
FID ↓ 81.39 80.25 81.62 82.60 68.48 71.29 72.91 71.86
LPIPS ↓ 0.281 0.279 0.281 0.277 0.228 0.230 0.232 0.231

Table C.1. Ablation study: effect of sparsity regularization in blind
deconvolution.

Image Kernel

Method LPIPS ↓ PSNR ↑ SSIM ↑ MSE ↓ MNC ↑
BlindDPS (ours) 0.247 23.65 0.786 0.002 0.958
Uniform + Sparse 0.566 11.72 0.369 0.163 0.844
Uniform prior [33] 0.595 10.03 0.352 0.165 0.839

Table C.2. Ablation study: uniform prior vs. diffusion prior
(BlindDPS).

as uniform prior may be a feasible option for scalar param-
eters, as the one in [33], much care should be taken when
applied to higher dimensional parameters such as blind de-
convolution.

C.2. Effect of sparsity regularization

To check the effect of sparsity regularization in (20), we
perform an ablation study by varying λ from 0.0 to 5.0.
Specifically, we use l1 sparsity regularization with differ-
ent λ for 100 blurred images taken from validation set for
FFHQ, with forward model and blur kernels adjusted to be
identical to those of the main experiment (section E).

C.3. Progress of estimation

As discussed in section 3 of main text, the proposed
method admits a natural Gaussian scale-space evolution of
estimation, when visualized in the denoised representations
x̂0, k̂0. To quantify the trend in which the estimates evolve,
we measure the MSE against the ground truth image and
the kernel, and average the trend over 100 of the test data.
We summarize the result in Fig. C.1a, C.1b. Here, we see
that the MSE value drops to the minimum value at about
400/1000, 200/1000 iterations, which is relatively early in
the whole reverse diffusion process. For the rest of the steps
(especially for the images), the remaining high frequency
details are in-filled, boosting the perceptual quality.

D. Extended Related Works

In this section, we discuss related works categorized into
two applications that we tackle - blind deblurring, and imag-
ing through turbulence.



(a) Progress of x̂0(xt) (b) Progress of k̂0(kt)

Figure C.1. Progress of estimation error averaged over 100 test set in blind deconvolution. Blue line: mean value, shaded area: ±1σ.
Measured with MSE against the ground truth.

D.1. Blind deblurring

We first review the optimization-based (model-based)
methods that were extensively studied. The seminal work
of Chan et al. [7] introduced the total variation (TV) prior,
which enhances the gradient sparsity of both the image and
the kernel. The scheme has been developed and re-invented
over the years [34], yielding better practices to obtain sta-
ble results [45]. To promote sparsity of both the image
and the kernel, regularizations based on ℓ0 penalty [41],
ℓp, 0 < p < 1 penalty [64] based on the generalized it-
erative shrinkage algorithm (GISA) [63], ℓ1, ℓ2 [30] were
proposed. Later on, it was shown that non-blurry natural
images have sparse “dark channel” [43], where the dark
channel is computed as the union of minimum values in
patch occurrences. Promoting sparsity of the dark chan-
nel [44] has shown to be an effective method for perform-
ing blind deconvolution. When the regularization functions
are chosen, one typically performs alternating optimization
strategies [4] to solve the problem. It should be noted that
it is often the case where the optimization strategy is non-
trivial, and involves many tricks such as multi-scale opti-
mization [42], and painful parameter tuning for specific in-
put images. Wrong choice of parameter/optimization strat-
egy typically results in heavily compromised performance.

In recent years, deep learning (DL) based methods have
been largely developed. One can categorize DL methods
into 1) explicit kernel estimation methods, where the net-
work is designed to both deblur the image, and to estimate
the exact kernel; 2) amortized inference, where the estima-
tion of kernel does not take place. For the first type of meth-
ods, convolutional neural networks (CNN) were adopted for
seperate modules, estimating the kernel and the deblurred
image, respectively [48, 54, 59]. Advancing the conven-
tional model-based priors, discriminative priors [35] and

deep image priors (DIP) [47] were proposed, showing im-
proved performance. While deep priors typically improves
the performance, one should note that they are also often
unstable, leading to undesirable solutions: both adversarial
training and jointly training two deep image priors are hard
to handle.

More recently, learning the inverse mapping without ex-
plicitly estimating the kernel has gained popularity. For
these methods, neural network is trained through super-
vised learning with paired clean and blurry images. Es-
pecially, DeblurGAN [31] used the perceptual loss that
helps to maintain contents and adversarial loss that mini-
mizes the Wasserstein distance between the clean images
and reconstructed images. DeblurGAN-v2 [32] focused
on handling multi-scale features to solve the blind deblur-
ring problem. They adopted Feature Pyramide Network
(FPN) and proposed double-scale discriminators, where
each discriminator measures the Wasserstein distance be-
tween clean images and reconstructed images at global and
local patch level, respectively. Meanwhile, MPRNet [61]
adopted a multi-stage learning method that decomposes
the given problem into sub-problems and solves each one
through a lightweight sub-network including a supervised
attention module that gives weight to local features. As
a result, blurry images are progressively restored. On
the other hand, transformer based methods has been pro-
posed and shown notable performance on deblurring task.
Specifically, IPT [8] pretrained transformer on multiple im-
age processing tasks and fine-tune the transformer on each
tasks, Uformer [57] proposed LeWin transformer block for
locally-enhanced self attention and multi-scale modulator,
and Restormer [60] proposed two specialized transformer
modules called MDTA and GDFN with progressive training
scheme that enhances the image restoration performance on



different spatial resolutions. While often achieving state-
of-the-art performance, these methods tend to compromise
flexibility, modularity, and generalization capacity. For in-
stance, the model cannot handle degradations that deviate
from the traning data.

D.2. Imaging through turbulence

Although the correct estimation model for imaging
through turbulence is tilt-then-blur [6], for inverse problem
solving, the blur-then-tilt model is more often used. This
is mainly due to the ease of applying off-the-shelf blind
deblurring methods once the tilt is mitigated through, e.g.
optical flow [37]. While in our work, we only consider sin-
gle frame turbulence mitigation for simplicity, it is usually
the case where we have multiple temporal frames that are
degraded by random phase distortions. Hence, removing
the tilt proceeds by e.g. temporal averaging [62], varia-
tional model [58], frame selection [1], etc. Moreover, when
dealing with sequence of images, the “Lucky image fusion”
step is often performed to find the reference image with the
least amount of phase distortion. For details in such step,
see, e.g. [18]. Once the distortion (tilt) is mitigated, the
deblurring step is often performed with off-the-shelf algo-
rithms [1,58,62]. However, as most off-the-shelf deblurring
algorithms do not take into account the kernel priors specif-
ically for turbulence, a more specified algorithm leveraging
basis expansion [39] was proposed.

Similar to deblurring methods, various DL based meth-
ods have been proposed. Utilizing CNN to estimate the
phase distortion map [38] was proposed. Moreover, super-
vised learning based on pairs of simulated atmospheric tur-
bulence images have been proposed over the years. Trans-
fer learning approach from pre-trained deblurring network
was proposed [20]. Variants of generative adversarial net-
work (GAN) based methods were also proposed [25, 46],
leveraging the adversarial learning scheme to enhance the
visual quality of the reconstructions. Recently, a method
that uses physics-driven transformer architecture dubbed
TurbNet [40] was proposed. To the best of our knowledge,
none of the methods in the literature considered using unsu-
pervised reconstruction scheme by utilizing the generative
prior, as in our method. Although our method is developed
upon a rather simplified forward model of imaging through
turbulence, we believe our work establishes a proof of con-
cept, and opens up a new are regarding turbulence recon-
struction.

E. Inverse problem setting

In this section, we briefly summarize how our forward
model is constructed.

E.1. Blind deblurring

The forward model is given as

y = k0 ∗ x0 + n, n ∼ N (0, σ2I), (51)

where σ = 0.02 is set as the measurement noise level. The
size of the kernel is set to 64× 64. For motion blur kernels,
we use the random kernel generator from1 with intensity
value set to 0.5.

E.2. Imaging through turbulence

The forward model is given as

y = k0 ∗ Tϕ0
(x0) + n, n ∼ N (0, σ2I), (52)

where ϕ is the tilt vector field that has identical size of the
given image (i.e. in our case 256×256). Specifically, the tilt
vector field is generated with the algorithm proposed in [5].
The parameters are set to M = 500, N = 32, σ = 1.0,
with all the other parameters set same to the baseline. The
blur kernel k0 is taken to be isotropic Gaussian kernel with
standard deviation of 0.4 (FFHQ), and 0.2 (ImageNet). The
proposed algorithm for solving imaging through turbulence
is presented in Algorithm. 2.

F. Experimental Details
F.1. Blind deblurring

For blind deblurring, we conduct experiments on FFHQ
256×256 [26], and AFHQ-dog 256×256 [10] dataset on
{motion, Gaussian}-deblurring. We choose 1k validation
set for FFHQ, and use 500 test sets for AFHQ-dog. We
leverage pre-trained score functions, as in the experimental
setting of [13]. We train the score function on 60k generated
blur kernels of size 64 × 64 (both Gaussian and motion2)
for 3M steps with a small U-Net [16]. For testing, motion
blur kernel is randomly generated with intensity 0.5 follow-
ing [11], and the standard deviation of the gaussian kernels
is set to 3.0. Step size for Algorithm 1 is set to α = 0.3
for both FFHQ/AFHQ. We choose Rk(·) = ℓ1, λ = 1.0 for
FFHQ, and Rk(·) = ℓ0, λ = 5.0 for AFHQ.

F.2. Imaging through turbulence

For imaging through turbulence, we conduct experi-
ments with FFHQ 256×256, and ImageNet 256×256 [15],
with pre-trained ImageNet score function taken from [16].
The score function for kernel blur is taken from the blind
deblurring experiment, and the score function for the tilt
map is trained with 50k randomly generated tilt maps fol-
lowing [5]. The point spread function (PSF) is assumed to

1https://github.com/LeviBorodenko/motionblur/
blob/master/motionblur.py

2https://github.com/topics/motion-blur

https://github.com/LeviBorodenko/motionblur/blob/master/motionblur.py
https://github.com/LeviBorodenko/motionblur/blob/master/motionblur.py
https://github.com/topics/motion-blur


be a Gaussian with standard deviation of 4.0, 2.0 for FFHQ,
ImageNet, respectively (size 64×64). For both blind in-
verse problems, we add Gaussian measurement noise with
σ = 0.02. Step size is set to α = 0.3.

F.3. Training

We take pre-trained score function for the FFHQ dataset,
and the ImageNet dataset, following the settings of [11].
When training the score function for kernels, we create a
database of that consists of 60k 64 × 64 kernels. Among
them, 50k motion blur kernels were generated from3, by
sampling the intensity value I ∼ Unif(0.2, 1.0). The
other 10k Gaussian blur kernels were generated with ran-
dom standard deviation σ ∼ Unif(0.1, 5.0).

For training the score function for kernel / tilt-map, we
use the U-Net architecture from guided-diffusion4,
and train the models using base configurations. The models
were trained with a single RTX 3090 GPU for 3.0M / 1.5M
steps, which took about one day / two days, respectively.

F.4. Compute time

As stated in the limitations, the number of score func-
tions that are used at inference time scales linearly with
the number of components involved in the forward model.
For blind deblurring, two neural networks are used (image,
kernel), and for imaging through turbulence, three neural
networks are used (image, kernel, tilt map). In order to
quantify additional compute cost in each of the situation,
we measure the wall-clock time to reconstruct a single im-
age with a single RTX 2080ti GPU. DPS [11]: 132.39 sec.
BlindDPS—Blind deblurring(2 score functions): 180.22
sec. BlindDPS—Imaging through turbulence(3 score func-
tions): 220.76 sec. For all the iterative comparison methods
that follow, we also measure the wall-clock time for com-
pute measured with a single RTX 2080ti GPU.

F.5. Comparison methods

For blind deblurring, we compare the reconstruction
performance of BlindDPS against state-of-the-art meth-
ods. Specifically, we choose MPRNet [61] and Deblur-
GANv2 [32] as supervised learning-based baselines that are
incapable of kernel estimation, but work through amortized
inference. We also compare our method against SelfDe-
blur [47], which leverages deep image prior (DIP) for esti-
mating both the kernel and the image. For optimization-
based methods, we use Pan-dark channel prior (Pan-
DCP) [44], Pan-ℓ0 [41], and Perrone et al [45]. For imag-
ing through turbulence, we use MPRNet [61], Deblur-
GANv2 [32], and TSR-WGAN [25] as comparison meth-
ods that are based on supervised traning. We also compare

3https://github.com/LeviBorodenko/motionblur
4https://github.com/openai/guided-diffusion

against ILVR [9], which is a diffusion model-based method
that is capable of restoring images from low resolution.
Pan-DCP [44]. The method utilizes the dark channel prior
as the regularization function for images. We use the official
implementation5, with the parameters advised for facial blur
images. We list the specific parameters below. Optimiza-
tion is performed in a coarse-to-fine strategy in 8 different
stages. Compute time: 132.19 sec.

• λdark = 4e− 3

• λgrad = 4e− 3

• λtv = 1e− 3

• λl0 = 5e− 4

Pan-ℓ0 [41]. The method regularizes ℓ0 regularization for
both the image and the kernel. We use the official imple-
mentation6, with the parameters set as below. Optimization
and post-processing is performed similar to Pan-DCP. Com-
pute time: 151.01 sec.

• λpixel = 4e− 3

• λgrad = 4e− 3

• λtv = 1e− 3

• λl0 = 2e− 3

SelfDeblur [47]. We use the default setting of YCbCr de-
blurring that selfdeblur uses, with static learning rate of 0.01
for 2500 steps. Optimization is performed by minimizing
the MSE for the first 500 steps, and then switching the loss
to 1− SSIM(·, ·). Compute time: 142.91 sec.
MPRNet [61]. We use the official implementation7, with
the parameters, learning rate decay and neural network ar-
chitectures advised for the deblurring task. For both FFHQ
and AFHQ, we train the model for 30k iterations with a
batch size of 3. For a fair comparison with the proposed
method, half of the input image consists of gaussian blurred
images and the other half image consists of motion blurred
image.
DeblurGANv2 [32]. We use the official implementa-
tion8, by following the default settings for parameters, data
augmentation strategies and neural network architectures.
Specifically, we train the model by minimizing sum of pixel
distance loss, WGAN-gp adversarial loss and perceptual
loss with weight parameters as below. Inception-ResNet-v2
is used as backbone of the generator. For both FFHQ and

5https://jspan.github.io/projects/dark-channel-
deblur/index.html

6https : / / jspan . github . io / projects / text -
deblurring/index.html

7https://github.com/swz30/MPRNet
8https://github.com/VITA-Group/DeblurGANv2
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AFHQ, we train the model for 1.5 million iterations with
a batch size of 1 and input image contains half Gaussian
blurred images and the other half motion blurred images for
fair comparison with the proposed method.

• λpixel = 5e− 1

• λadv = 6e− 3

• λperceptual = 1e− 2

ILVR [9]. We choose the following hyper-paremters:
down-scaling factor of 16, 1000 sampling steps, with the
latent guidance applied for 1000-100 sampling steps. We
use the same score functions that were used for BlindDPS.
TSR-WGAN [25]. The original work considers spatio-
temporal 3D data, whereas our inverse problem setting con-
siders single frame imaging through turbulence. Hence, we
design a U-Net like network architecture that consists of 2D
convolutions rather than leveraging 3D convolutions. Other
training configurations follow the default setting of [25].

Note that for methods that are capable of estimating
the kernel simultaneously (i.e. Pan-DCP, Pan-ℓ0, SelfDe-
blur), only odd-sized kernels can be estimated, whereas our
ground truth kernels are even-sized. To match the discrep-
ancy, we estimate 65×65 sized kernel first, and then cut the
redundant row/column as the post-processing step. In prac-
tice, such discrepancy only affects the result marginally.

G. Further Experiments
Further experimental results on blind deblurring are

shown in Fig. G.1, G.2, G.3, G.4. Further experimen-
tal results on imaging through turbulence are shown in
Fig. G.5, G.6.



Figure G.1. Blind motion deblurring results on the FFHQ 256 × 256 dataset. (a) Measurement, (b) Pan-DCP [44], (c) MPRNet [61], (d)
SelfDeblur [47], (e) BlindDPS (ours), (f) Ground truth.



Figure G.2. Blind motion deblurring results on the AFHQ 256 × 256 dataset. (a) Measurement, (b) Pan-DCP [44], (c) MPRNet [61], (d)
SelfDeblur [47], (e) BlindDPS (ours), (f) Ground truth.



Figure G.3. Blind Gaussian deblurring results on the FFHQ 256× 256 dataset. (a) Measurement, (b) Pan-DCP [44], (c) MPRNet [61], (d)
SelfDeblur [47], (e) BlindDPS (ours), (f) Ground truth.



Figure G.4. Blind Gaussian deblurring results on the AFHQ 256× 256 dataset. (a) Measurement, (b) Pan-DCP [44], (c) MPRNet [61], (d)
SelfDeblur [47], (e) BlindDPS (ours), (f) Ground truth.



Figure G.5. Imaging through turbulence results on the FFHQ 256 × 256 dataset. (a) Measurement, (b) ILVR [9], (c) MPRNet [61], (d)
TSR-WGAN [25], (e) BlindDPS (ours), (f) Ground truth.



Figure G.6. Imaging through turbulence results on the ImageNet 256× 256 dataset. (a) Measurement, (b) ILVR [9], (c) MPRNet [61], (d)
TSR-WGAN [25], (e) BlindDPS (ours), (f) Ground truth.
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