
Supplementary Material
A. ADMM-TV

In this section, we derive the ADMM-TV optimization
framework for completeness. We are interested in solving
the problem of TV-regularized WLS of the following form:

min
x

1

2
∥y −Ax∥22 + λ∥Dzx∥1, (19)

where Dz takes the finite difference across the
z−dimension. In order to solve the problem in an
alternating fashion, we split the variables

min
x,z

1

2
∥y −Ax∥22 + λ∥z∥1 (20)

s.t. z = Dzx. (21)

The scaled formulation of ADMM [3] is then given by

x+ = argmin
x

1

2
∥y −Ax∥22 +

ρ

2
∥Dzx− z +w∥22

(22)

z+ = argmin
z

λ∥z∥1 +
ρ

2
∥Dzx

+ − z +w∥22 (23)

w+ = w +Dzx
+ − z+. (24)

(22) is convex and smooth, and thus has a closed form solu-
tion

x+ = (ATA+ ρDT
z Dz)

−1(ATy + ρDT
z (z −w)),

(25)

where one can perform CG rather than computing the ma-
trix inverse directly. In order to solve, (23), we define the
proximal operator [24] as

proxf,η(z) ≜ argmin
x

f(x) +
1

2η
∥x− z∥22. (26)

By inspecting (23), we know that it is in the form of proxi-
mal mapping

z+ = prox∥·∥1,λ/ρ(Dzx+w) (27)

= Sλ/ρ(Dzx+w), (28)

where we have leveraged the fact that the proximal mapping
of the ℓ1 norm is given as the soft thresholding operator S.
In summary, we have

x+ = (ATA+ ρDT
z Dz)

−1(ATy + ρDT
z (z −w))

z+ = Sλ/ρ(Dzx
+ +w)

w+ = w +Dzx
+ − z+.

The algorithmic detail can be found in Algorithm 2.

Algorithm 2 DiffusionMBIR (slow)

Require: sθ, N,M,K, λ, ρ, {σi}
1: xN ∼ N (0, σ2

T I)
2: for i = N − 1 : 0 do ▷ SDE iteration
3: x̄i ← Solve(xi+1, sθ∗)
4: ACG ← ATA+ ρDT

z Dz

5: z(1) ← torch.zeros like(x̄i)
6: w(1) ← torch.zeros like(x̄i)
7: for j = 1 : M do ▷ ADMM iteration
8: b

(j)
CG ← ATy + ρDT (z(j) −w(j))

9: x̄
(j+1)
i ← CG(ACG, b

(j)
CG ,K) ▷ CG iteration

10: z(j+1) ← Sλ/ρ(Dzx̄
(j+1)
i +w(j))

11: w(j+1) ← w(j) +Dzx̄
(j+1)
i − z(j+1)

12: end for
13: xi ← x̄

(M+1)
i

14: end for
15: return x0

Patient ID # slices FOV
(mm) KVP Exposure

time (ms)
X-ray

tube current (mA)

L097 500 430 120 500 327.6
L109 254 400 100 500 322.3
L143 418 440 120 500 416.9
L192 370 380 100 500 431.6
L286 300 380 120 500 328.9
L291 450 380 120 500 322.7
L310 340 380 120 500 300.0
L333 400 400 100 500 348.7
L506 300 380 100 500 277.7

L067 (test) 448 370 100 500 234.1

Table 2. AAPM dataset specification. L067 volume is used for
testing while the other volumes are used for training.

B. Details of experiment

B.1. Dataset

AAPM. We take the dataset from the AAPM 2016 CT
low-dose grand challenge, where the data are acquired in a
fan-beam geometry with varying parameters, as presented
in Table 2. The data preparation steps follow that of [13].
From the helical cone beam projections, approximation to
fanbeam geometry is performed via single-slice rebinning
technique [23]. Reconstruction is then performed via stan-
dard filtered backprojection (FBP), where the reconstructed
axial images have the matrix size of 512 × 512. We re-
size the axial slices to have the size 256 × 256, and use
these slices to train the score function. The whole dataset
consists of 9 volumes (3332 slices) of training data, and 1
volume (448 slices) of testing data. To generate sparse-view
measurements, we retrospectively employ the parallel-view
geometry for simplicity.



Figure 6. 4-view SV-CT reconstruction results of the test data (First row: axial slice, second row: sagittal slice, third row: coronal slice).
(a) FBP, (b) ADMM-TV, (c) Lahiri et al. [16], (d) Chung et al. [5], (e) proposed method, (f) ground truth. Green lines in the inset of first
row (a): measured angles.

Figure 7. 2-view SV-CT reconstruction results of the test data
(First row: axial slice, second row: sagittal slice, third row: coro-
nal slice). (a) FBP, (b) proposed method, (f) ground truth. Green
lines in the inset of first row (a): measured angles.

BRATS. We take the dataset from the multimodal brain
tumor segmentation BRATS 2018 challenge [22], where

we select the test data as the first FLAIR volume, which has
the matrix size of 240 × 240 × 154. As stated in the main
text, all the methods were trained with the separate fastMRI
2019 knee database [36].

B.2. Details of network training

For the CT score function, we train the ncsnpp net-
work [32] without modifications with (6) by setting λ =
σ2(t) [29], and ε = 10−5. Our network is trained using
the Adam optimizer (β1 = 0.9, β2 = 0.999) with a linear
warm-up schedule, reaching 2 × 10−4 at the 5000th step,
and with a batch size of 2 using a single RTX 3090 GPU for
200 epochs. Training took about a week and a half.

B.3. Comparison methods

Chung et al. [5] As the method is based on diffusion mod-
els, we use the same pre-trained score function, and use the
reconstruction scheme of [5], which amounts to applying
ART after every PC update steps.
Lahiri et al. [16] We use 2-stage reconstructing 3D CNNs,
where we train the networks with slabs, not taking patches
in the xy dimension, as the paper suggests. The architecture
of CNN was taken as a standard U-Net [36] architecture
rather than stack of single-resolution CNNs, as we achieved
better performance with U-Nets. Furthermore, we drop the
adversarial loss and only use the standard reconstruction
loss, as we found the training to be more stable. CG was



Axial∗ Coronal Sagittal

Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
DiffusionMBIR (ours) 34.92 0.956 32.48 0.947 28.82 0.832

Chung et al. [5] 26.01 0.838 24.55 0.823 21.59 0.706
Lahiri et al. [16] 28.08 0.931 26.02 0.856 23.24 0.812
Zhang et al. [38] 26.76 0.879 25.77 0.874 22.92 0.841
ADMM TV 23.19 0.793 22.96 0.758 19.95 0.782

Table 3. Quantitative evaluation of LA-CT (90◦) (PSNR, SSIM)
on the AAPM 256×256 test set. Bold: Best, under: second best.

Axial∗ Coronal Sagittal

Method PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
DiffusionMBIR (ours) 41.49 0.974 37.36 0.942 37.18 0.953

Score-MRI [7] 40.38 0.968 33.97 0.925 34.02 0.928
DuDoRNet [16] 39.78 0.974 33.56 0.927 33.48 0.927
Unet [11] 37.15 0.929 31.56 0.899 30.90 0.816
Zero-filled 34.18 0.923 29.53 0.897 27.82 0.903

Table 4. Quantitative evaluation of CS-MRI (acc. ×2) (PSNR,
SSIM) on the BRATS data. Bold: Best, under: second best.

applied with 30 iterations.
FBPConvNet [11], Zhang et al. [37] We use the same U-
Net architecture that was used to train Lahiri et al. [16], but
only on 2D images. Note that the original work of Zhang et
al. [37] uses a much simpler CNN architecture, which leads
to degraded performance.
ADMM-TV. We minimize the following objective

min
x

1

2
∥y −Ax∥22 + λ∥Dx∥2,1, (29)

where D = [Dx,Dy,Dz], which corresponds to the
isotropic TV. The outer iterations are solved with ADMM
(30 iterations), while the inner iterations are solved with CG
(20 iterations). We perform coarse grid search to find the
parameter values that produce low MSE values, then per-
form another grid search to find the most visually pleasing
solution — images with salient edges. The parameter is set
to (λ, ρ) = (0.5, 50) for SV-CT, and (λ, ρ) = (0.15, 40) for
LA-CT.
Score-MRI. [7] The method utilizes the same score func-
tion as the proposed method, but relies on iterated projec-
tions onto the measurement subspace after every iteration
of the PC update. Every slices in the xy dimension are re-
constructed separately, then stacked to form the volume.
DuDoRNet. [39] We train DuDoRNet with 4 recurrent
blocks and the default parameters, following the configu-
ration of [7]. The network is trained on the fastMRI knee
dataset, with the proton density (PD) / proton density fat
suppressed (PDFS) image for the prior information.
U-Net. [36] We leverage the pre-trained U-Net on the
fastMRI dataset, trained only with the L1 loss in the image
domain.

C. Further experiments
C.1. Additional experimental results

4-view sparse view tomographic reconstruction is pre-
sented in Fig. 6. Furthermore, we demonstrate that we can
even perform 2-view reconstruction, as can be seen in Fig. 7.
In this regime, the information contained in the measure-
ment is very few and sparse — clearly not sufficient for
achieving an accurate reconstruction. As we are leveraging
the generative prior however, we can sample multiple recon-
structions that are 1) perfectly measurement feasible, and
2) looks realistic. Although this might not be of significant
importance in the medical imaging field, it could greatly
impact fields where approximate reconstructions from very
limited acquisitions are necessary.

C.2. Number of views vs. performance

We have verified that we can perform extreme sparse-
view reconstruction with the proposed method. One can
naturally ask the limit of the proposed method, and the trend
between the measured number of views versus the recon-
struction performance, which we show in the plot shown in
Fig. 9. Note that the given plot is a log plot in the x-axis
(i.e. # views). We can easily see that the performance caps
if we increase the number of measurements to higher than
16, and we also see that down to 8-views, we can acquire re-
constructions with only a modest drop in the performance.
The performance starts to heavily degrade as we drop down
the number of views below 4. We conclude that there is a
singular point, where the information in the measurement
is just not enough, even when we have a very strong recon-
struction algorithm.



Figure 8. CS-MRI results of the test data (First row: axial slice, second row: sagittal slice, third row: coronal slice). (a) zero-filled, (b)
U-Net [36], (c) DuDoRNet [39], (d) Score-MRI [7], (e) proposed method, (f) ground truth. PSNR/SSIM values presented in the upper
right corner. Mask presented in the first row of (a): Sub-sampling mask applied to all slices.
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Figure 9. Number of measured views vs. PSNR[db]

Figure 10. Ablation study for the choice of augmented prior. (a)
TV (xyz) prior, (b) TV (z) prior; proposed method, (c) Ground
truth.


	. ADMM-TV
	. Details of experiment
	. Dataset
	. Details of network training
	. Comparison methods

	. Further experiments
	. Additional experimental results
	. Number of views vs. performance


