
1. Supplementary
This article forms the supplementary material for our pa-

per which aims to provide a better insight into our methods,
and also provide additional details which we were unable to
include. Here, we expand upon the following :

1. Additional Ablation Studies

(a) Ablation on Number of Scenes

(b) Ablation on Number of Hierarchies

(c) Efficiency and Memory Requirements

2. Analysis of the Google World Streets 15k dataset

(a) Lorenz Curves

(b) Gini Coefficient

(c) Examples of Image Localizations

3. Review of Baselines

(a) Encoder Baselines

(b) Pre-existing Methods

4. Implementation Details

(a) Hyperparameters

(b) Augmentations

5. Qualitative Analysis

1.1. Additional Ablation Studies

1.1.1 Ablation on Number of Scenes

Previous works [6] [7] have already emphasized the impor-
tance of having scene-type information in training labels
for geo-localization, so this was not the focus of our work.
However, we provide results to both show the necessity of
these labels, as well as the optimal number to use. On both
IM2GPS3k [10] as well as YFCC26k [9], we found dimin-
ishing returns when using 365, with a drop of 0.2% 1KM
accuracy, as seen in Table 1.

Table 1. Ablation Study on Number of Scenes. We show the
affect that the number of scenes has on accuracy. Using 16 scenes
outperforms every other option on nearly all metrics.

Dataset # of Scenes
Distance (ar [%] @ km)

Street City Region Country Continent
1 km 25 km 200 km 750 km 2500 km

Im2GPS3k
[10]

0 11.8 30.4 46.2 58.3 77.6
3 12.0 31.7 47.0 59.8 78.4

16 12.2 32.0 47.9 60.5 79.8
365 11.9 31.8 47.2 58.5 78.6

YFCC26k
[9]

0 8.0 19.8 30.1 44.6 62.2
3 8.4 20.5 31.0 46.0 64.8

16 8.7 21.4 31.6 47.8 66.2
365 8.5 21.6 30.2 46.4 64.9

Table 2. Ablation Study on Number of Hierarchies. We show
our results when varying the number of hierarchies used during
training.

Dataset # of hierarchies
Distance (ar [%] @ km)

Street City Region Country Continent
1 km 25 km 200 km 750 km 2500 km

Im2GPS3k
[10]

1 9.8 29.6 41.1 56.4 73.5
3 12.8 34.5 46.1 61.5 76.7
5 13.4 34.4 45.4 61.1 76.1
7 14.3 34.8 45.7 61.3 76.0

YFCC26k
[9]

1 6.7 18.2 29.0 45.2 64.0
3 10.1 24.3 34.7 50.1 67.8
5 10.2 24.1 34.8 50.0 67.7
7 10.8 23.5 34.0 49.3 67.4

GWS15k

1 0.0 0.9 5.7 21.8 44.0
3 0.2 1.3 7.9 25.4 49.4
5 0.6 1.7 8.1 24.3 48.0
7 0.2 1.0 6.9 22.7 46.2

1.1.2 Ablation on Number of Hierarchies

While previous works utilized geographic hierarchies, they
were either used separately [10] or limited to only using
3 levels of specificity [6, 7]. We are the first to use more
than 3 hierarchies in a combined manner. As mentioned
in the main paper, our hierarchies are defined by limiting
the number of training images in an S2 cell. All hierar-
chies have a minimum threshold of 50 images, while the
maximum number of images is anywhere from 25000 to
500 depending how geographically fine-grained each class
must be, specific values can be found in Table 4. We use
at most 7 hierarchies but experiment with 1, 3, 5, and 7 on
the testing datasets Im2GPS3k [10] and YFCC25600 [9].
Each model is trained only with the number of classifiers
specified by the number of hierarchies. The ultimate goal
of geo-localization is to predict the location of an image as
accurately as possible. With this in mind Table 2 shows
that adding more hierarchies improves geo-localization ac-
curacy at the 1KM scale by as much as 1.5% over the estab-
lished 3 hierarchies. However, if one were not wanting to
find the exact location, but instead the country or continent,
then it seems that 3 hierarchies shows the best result. It ap-
pears that introducing extra fine-grained geographic classes
causes our model to focus on extracting features to predict
an image’s location as precisely as it can at the cost of not
finding features that correspond to coarser geographic hier-
archies.

1.1.3 Efficiency and Memory Requirements

We provide a comparison of parameters and GMACs with
the previous state-of-the-art Translocator [7]. We can see
that our method with a Vision Transformer [1], which is the
encoder used in Translocator, has significantly fewer param-
eters and GMACs than Translocator. Our best model which
uses the SWIN [4] has a comparable number of parameters
but fewer GMACs than SOTA.



Table 3. Efficiency and Memory Requirements. We show the
Parameters and GFLOPs of our method compared to previous
SOTA. Results denoted with * are using our recreation of the given
model.

Model # of Parameters GMACs
Translocator* [7] 340M 78.67

Ours (ViT) 128M 19.73
Ours (Swin) 344M 53.1

1.2. Analysis of the Google World Streets 15k
dataset

In the main paper, we discussed how previous world-
wide geo-localization datasets focused heavily on tourist
heavy landmarks, ignoring systems’ ability to localize more
common, everyday scenes. Additionally, we showed our
Google World Streets 15k is designed to capture more of
these scenes, by taking random Google Street View snap-
shots based on a landmass-based weighting metric, rather
than pulling from photography databases.

1.2.1 Lorenz Curves

A Lorenz curve is a technique used to measure the distribu-
tion of some resource. [5] While typically used for income
inequality, we can use it to demonstrate the distribution of
images globally within each dataset. In our case(Fig. 1),
the x axis represents the cities with the bottom x% of total
images, with the y axis representing the cumulative number
of images. A perfectly equal distribution would be repre-
sented by the line y = x. While both both datasets contain
some level of inequality (as larger metropolitan cities are
both larger and have more images available), the top 1%
of cities within IM2GPS3k have significantly more images
than even the top 5%.

1.2.2 Gini Coefficient

The Gini coefficient G is a measure of inequality within
some frequency distribution [2]. It is an estimation of the
area under a distribution’s Lorenz curve vs the ideal case
(y = x), thus providing a rigorous calculation of equality.
Again, in our case, this distribution will be the number of
images per city. Let i and j represent two cities. xi repre-
sents the number images in city i. x is the average number
of images per city, across all cities, serving as a normaliza-
tion term. Then, we calculate G as follows.

G =

∑n
i=1

∑n
j=1 |xi − xj |
2n2x

(1)

In the ideal case, every city has the same number of
images, and therefore the difference between all cities is

Figure 1. A comparison of the Lorenz curves of each validation
dataset. The x-axis represents the botton x decile of cities, or-
dered by number of images while the y-axis represents the number
of images that decile contains. The black line represents perfect
equality, and therefore the closer to this line, the better. While all
three datasets contain some level of inequality, we see the curves of
IM2GPS and YFCC rise sharply near the end, implying the most
represented cities makeup a very large percentage of the dataset.

zero. Therefore, the resulting G would also be 0. Perform-
ing this calculation on each of our validation sets, we find
IM2GPS3K’s and YFCC26k’s coefficients to be 0.60 and
0.73, respectively. GWS15k’s coefficient is 0.51, an im-
provement of nearly 0.10

1.2.3 Examples of Image Localizations

In the following subsection, we detail a number of exam-
ple localizations from our GWS15k dataset, as well as an
example of failure cases. These are shown in Figures 2, 3,
4, 5, 6 and 7. As expected, strong geo-localization is com-
monly realized in images that contain noticeable landmarks,
architecture, and geography. However, GWS15k also chal-
lenges geo-localization systems with common, everyday lo-
cations. These types of locations are also represented in lo-
cations correctly geo-localized by our model. Examining
failure cases, we can see that we still struggle with loca-
tions that contain almost no man-made structures or struc-
tures not specific to a location–such as a playground.

1.3. Review of Baselines

• Vision Transformer (ViT) [1] This architecture, in-
spired from Natural-Language Processing, breaks an



Table 4. Training parameters for our model

Hyperparameter Value
Batch-size 512

Epochs 40
Optimizer SGD

Learning Rate 0.01
Momentum 0.9

Weight Decay 0.0001
Hierarchy Losses Cross-Entropy

Scene Loss Cross-Entropy
Scheduler MultiStepLR
Milestones [4, 8, 12, 13, 14, 15]

Gamma 0.5
Maximum Images per Class [25000, 10000, 5000, 2000, 1000, 750, 500]
Minimum Images per Class 50

Classes per Hierarchy [684, 1744, 3298, 7202, 12893, 16150, 21673]

image into non-overlapping squares, called patches,
and feeds them through multiple layers of self-
attention. For our baselines with this encoder, we use
the V iT -B architecture pre-trained on ImageNet 21k
[8] and train it on MP-16 [3]. For classification we use
the cls token output and feed it into 3 classifiers (one
for each geographic hierarchy) and a classifier to pre-
dict the scene label as an ancillary task. The results of
this are show in Table 5 of the main paper.

• Shifted Window Transformer (Swin) [4] Build-
ing off of ViT, Swin Tranformers re-think the self-
attention step and instead perform attention only
within specific windows that shift at different layers.
Swin also performs a patch merging operation which
lets the model learn multi-scale features. We use this
architecture pretrained on ImageNet 21k [8] and train
it on MP-16 [3] as we did with ViT. Swin, however,
does not use a cls token but instead outputs a feature
map of size 7× 7. Therefore, we average pool the fea-
ture map to get one set of features, which is passed to
the geographic and scene classifiers. These results are
also in Table 5 of the main paper.

1.4. Implementation Details

1.4.1 Hyperparameters

Our model is trained for 40 epochs with a batch-size of
512. We utilize Stochastic Gradient Descent with an initial
learning rate of 0.01, momentum of 0.9, and weight decay
of 0.0001. Our encoder is pretrained on ImageNet [8] and
we use Cross-Entropy for all of our losses. We outline the
training parameters for our model in Table 4.

1.4.2 Augmentations

We utilize the following augmentations during training:

• Random Affine (1-15 degrees)

• Color Jitter (brightness=0.4, contrast=0.4, satura-
tion=0.4, hue=0.1)

• Random Horizontal Flip (probability=0.5)

• Resize (256×256)

• RandomCrop (224×224)

• Normalization

During Evaluation we use:

• Resize (256×256)

• TenCrop (224×224)

• Normalization

TenCrop is an augmentation technique that, given an im-
age, returns the center and corner crops as well as the hori-
zontally flipped version of each of those crops.

1.5. Qualitative Analysis

In figure 8 we show the locations that our model predicts
within each distance threshold for Im2GPS3k, YFCC26k,
and GWS15k. The overall dataset distributions are shown
for reference. We observe that our method can accurately
predict images in locations that other datasets leave out.
This shows our model’s capabilities better by ensuring we
test on images all around the Earth and aren’t biased to-
wards North America and Europe.

In figures 9, 10, 11, 12, 13, and 14 we provide attention
maps from Im2GPS3k [10], YFCC26k [9], and GWS15k.
We provide one success and one failure case for each of
these datasets. The attention maps are created by looking at
the first attention head in the final layer of cross-attention in
our Hierarchy Dependent Decoder. This shows the relation
between the decoder queries and the image patches from
our encoder. The attention maps for every hierarchy and
scene query are shown as well as the original image in the
top left for reference.



Figure 2. A random sample of GWS15k images our system correctly geo-localizes within 1KM. While well-known landmarks are greatly
represented in this sample, we can also see more common locations, such as parks and a city market.

Figure 3. A random sample of GWS15k images our system correctly geo-localizes within 25KM. In this sample, we can begin to see more
natural and non-urban locations. Here, our system is able to correctly identify the city of neighborhoods, as well as the rough location of
rural highways with interesting structures.

Figure 4. A random sample of GWS15k images our system correctly geo-localizes within 200KM. Here, we begin to see more challenging
images. While we have two images from a city street, every other image is on an exurban road or a rural highway. Nevertheless, we can
notice geography such as gravel quarries or plateaus that assists our system in identifying these locations.



Figure 5. A random sample of GWS15k images our system correctly geo-localizes within 750KM. As this sample includes images of
which the country was correctly determined, we can see examples of architecture specific to nations, but not necessarily regions. These
types of structures often include types of landposts, or road signs.

Figure 6. A random sample of GWS15k images our system correctly geo-localizes within 2500KM. As these are images of which only
the continent could be determined, nearly all samples of are rural locations. These images show little differentiable geography, but enough
fauna or examples of architecture to determine the continent.

Figure 7. A random sample of failure cases, where our system’s geo-localization error was over 3000KM.



Figure 8. A visualization of the distribution of our model’s correct predictions for different accuracy thresholds and testing datasets.
By observing the predictions of our model on GWS15k we can note that we are capable of identifying places that are underrepresented
in YFCC26k and Im2GPS3k. It is important to note that although our model’s performance is being limited by the training set–whose
distribution is comparable to that of YFCC26k–we accurately geo-localize images in areas that are not densely covered with high precision
(e.g. Western Asia, South America, and Central Australia).



Figure 9. A visualization of all the attention maps for an image of The Palace Museum in Beijing from Im2GPS3k that we predict within
0.32 KM. We see that the left most column, which represents the query we use for classification, has a far more direct attention map then
the incorrect scene queries.

Figure 10. A visualization of all the attention maps for a failure-case image from Barcelona, Spain in Im2GPS3k that we mispredict by
5284 KM. We see that nearly all of the queries are focusing on the roller coasters seen in the background. Our model was not able to find
features in the image specific enough to a scene or hierarchy in order to geolocalize it.



Figure 11. A visualization of all the attention maps for a success-case image at Catalunya Circuit in Barcelona from YFCC26k that we
predict within 0.75 KM. Note that the queries used for classification focus on the stands in the background and part of the race track, while
the less confident scenes focus either on the corners or generally about the entire image.

Figure 12. A visualization of all the attention maps for a failure-case image from Anshan, China in YFCC26k that we mispredict by 8442
KM. We see here that almost all scenes show identical attention maps no matter how confident we are in that scene’s prediction. Note
that this image is also an indoor image of a wall inside this building so we expect this to be an especially difficult image to localize unless
images of the same wall exist in the training set.



Figure 13. A visualization of all the attention maps for a success-case image from Samail, Oman in GWS15k that we predict within 7.3
KM. We see that the most confident scene queries are consistently focusing on the mountains in the background while the less confident
queries do not, showing that our scene selection process helps our model get the best features for geo-localization.

Figure 14. A visualization of all the attention maps for a failure-case image from Mashal University, Afghanistan in GWS 15k that we
mispredict by 3490 KM. We see that in this case the queries we would use (the leftmost column) share similar attention maps to the less
confident scenes, meaning we could not distinguish this image’s features well enough.
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