
Supplementary Material:
Structured 3D Features for Reconstructing Controllable Avatars

Enric Corona1† Mihai Zanfir2† Thiemo Alldieck3

Eduard Gabriel Bazavan3 Andrei Zanfir3 Cristian Sminchisescu3

1UPC, Barcelona 2Newton 3Google Research

In this document, we describe the implementation details
of our method extensively and provide more results and fail-
ure cases. We also include a Supplementary Video summa-
rizing our contributions and results.

1. Implementation Details

Data. Our synthetic data is based on a set of 3D Render-
People Scans [16]. We use 35 rigged and 45 posed scans
for training. The rigged scans are re-posed to 200 dif-
ferent poses sampled randomly from the CMU motion se-
quences [5]. With probability 0.4 we render a scan from a
frontal view, otherwise, we render from a random azimuth
and a uniform random elevation in [−20, 20]

◦. We render
each scan using high dynamic range image (HDRI) [10]
lighting and backgrounds using Blender [3]. We obtaining
ground-truth albedo directly from the scan’s texture map
and bake the full scan’s shading (including occluded re-
gions) to obtain ground-truth shaded colors.

For real images, we use the HITI dataset [2], which con-
tains 150K images in-the-wild with predicted foreground
segmentation masks and annotated 2D human keypoints.
We obtained initial GHUM parameters for each image
by estimating pose and shape using [8]. We then fur-
ther optimized pose and shape parameters by minimizing
the 2D reprojection error, the normalizing flow pose prior
from [21, 22] and a body shape prior. The weights for joint
reprojection, body pose regularization and body shape reg-
ularization are 10, 1 and 10 respectively, and we assumed a
perspective camera projection with fixed focal length. After
fitting, we remove fits that have an average reprojection er-
ror greater than 3 pixels or where at least 10% of the body
surface projects outside the segmentation mask, leading to
40k training images. For inference on images-in-the-wild
we follow the same fitting procedure, by leveraging pre-
dicted 2D keypoints instead of ground-truth annotations.

Architecture. We take masked input images at 512×512 px

† Work was done while Enric and Mihai were with Google Research.

resolution. We augment the input with rendered normal and
semantic maps to provide information about the GHUM
fit to the feature extractor network. The semantic map
is obtained by rendering the original template vertex lo-
cations as vertex colors, essentially defining a dense cor-
respondence map to GHUM’s zero-pose. We normalize
both maps between 0 and 1 and stack them with the orig-
inal image before passing all to the image feature ex-
tractor network. We noticed that by concatenating nor-
mal and semantic maps, the network is better able to cor-
rect noisy GHUM fits and their geometry. The feature
extractor network is a U-Net [17] with 6 encoder and 7
decoder layers with sizes [64, 128, 256, 512, 512, 512] and
[512, 512, 512, 512, 256, 256, 256] respectively. The illumi-
nation code is extracted from the bottleneck and has shape
8× 8× 512. The output per-pixel feature maps is of shape
512× 512× 256, with 256-feature vectors.

We next detail how we sample points on the body sur-
face and pool from image features. We explored different
point densities sampled from the body surface, all based on
the original GHUM mesh to maintain correspondences. To
subdivide a mesh, we add a vertex in the center of each
edge, increasing the number of faces by a factor of 4. The
subdivision is fast to perform at train/test time and does not
cause any significant overhead. However, naively subdi-
viding points on the mesh leads to a large number of body
points causing memory issues in later stages (e.g. process-
ing them on the transformer encoder), thus we additionally
run K-Means on the subdivided template mesh obtaining
clusters of 2k, 5k, 8k, 10k, 12k, 15k and 18k body points.
We ablate qualitatively the number of points on the model
in Fig. 11. Using fewer points does not significantly affect
the results, but produces blurrier color reconstructions. Our
final model uses 18k points. During inference, given the
GHUM fit of an image and estimated camera parameters,
we project these points to the image and extract image fea-
tures. We use the last 64 features of the previously extracted
image features to predict per-vertex deformation, using a 2-
Layer MLP with hidden shapes [64, 3] and leaky-ReLU af-



ter the first layer. We project the deformed vertices again to
obtain the remaining 192 per-pixel features.

The goal of the transformer encoder is to efficiently map
a query point x to the Structured 3D Features. We first
map both deformed body points and query point positions to
a higher-dimensional space using positional encoding with
6 frequencies, and apply a shared 2-Layer MLP with out-
put size 256. In practice, we use two MLPs predicting
geometry and albedo independently. We next apply at-
tention [20] to combine per-point features and obtain f⋆

x.
The final geometry and color heads are both MLPs with
eight 512-dimensional fully-connected layers and Swish ac-
tivation [15], an output layer with Sigmoid activation for
the color component, and a skip connection to the fourth
layer. The shading network s is conditioned on the previ-
ously extracted illumination code and consists of three 256-
dimensional fully-connected layers with ReLU activation,
including the output layer.

The weights of all layers are initialized with Xavier ini-
tialization [6], with the β parameter (Eq. 9) being initial-
ized as 0.1. We train all network components jointly end-
to-end for 500k iterations using the Adam optimizer [12],
with an initial learning-rate of 1 × 10−4 that linearly de-
cays with factor 0.9 every 50k steps. Training takes 5 days
under 8 GPUs V100 at batch size 8. During training, the
time bottleneck is the U-Net feature extractor. However,
the transformer is the memory bottleneck when comput-
ing attention, which scales with the number of body points
and query points. The 3D reconstructions are obtained af-
ter running Marching Cubes [13] at a densely sampled vol-
ume of 512 × 512 × 512 points, as common in previous
works [1, 18, 19]. After running Marching Cubes for ge-
ometry reconstruction, we query the network again on the
reconstruction’s vertices, to obtain albedo and color esti-
mations and texture the mesh. To render new views, we
explored the possibility of rendering the colored mesh vs.
using neural rendering without obtaining the 3D mesh. We
did not find significant differences between the two. In our
results, we apply the former and first obtain the mesh with
Marching Cubes for convenience.

Point and pixel sampling strategy. For training on the
3D RenderPeople scans, we sample 128 points uniformly
on the scan’s surface, and 128 points close to the body
(by adding noise ∼ N (0, 1 cm) to scan vertices). For the
Eikonal Loss, we sample points around GHUM by adding
noise ∼ N (0, 10 cm) to GHUM’s original vertices.

We rely on the original segmentation mask to compute
image-based losses, starting by sampling pixels efficiently
on foreground regions to let the network focus on occupied
regions. We randomly sample 32 pixels from the input im-
age, from which 75% are sampled inside the foreground
mask, and the rest are outside the mask. For the VGG-
loss [4] Lvgg we render a 16 × 16 patch by sampling its

center pixel randomly from the foreground mask.

Loss functions. We next describe how we obtain pixel col-
ors and our neural rendering losses more in detail. Follow-
ing the notation of the main document, the color of the pixel
ck is approximated by a discrete integration between near
and far bounds tn and tf of a camera ray r(t) = o + td
with origin o:

ck =

∫ tf

tn

T (t)σ(r(t))c(r(t), )dt , (1)

where:

T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
, (2)

and σ(·) is the predicted density of a query point, as de-
fined in the main document. Note that the point color being
integrated is the shaded point color, which is a composi-
tion of its albedo and normal, obtained from nx = ∇xsx
for point x. In practice, for each target pixel, we sample
64 points uniformly along the ray, within the bounding box
of GHUM’s nearest and furthest z vertex locations padded
with 10 cm.

Our experience is that the main trade-off during train-
ing is on excessive detail (noise in geometry) vs. excessive
smoothness and found the weight of the Eikonal component
to be the most important hyperparameter to balance the ca-
pacity of the model to generate wrinkles. In this manner, we
run a hyperparameter sweep on λeik from 0.01 to 0.5. The
loss weights for the final model are λrgb = 10, λvgg = 30,
λmask = 5, λeik = 0.1, λ3D rgb = 200, λ3D label = 30. Losses
Lsynth and Lreal contribute equally to the total loss.

Negative results. We explored a range of ideas that ended
up degrading or not affecting performance in our setting,
and we briefly report them here. Our intention in reporting
these results is to save time for future research and to give
a more complete picture of our attempts. Note that these
results are specific to our particular setup and are not meant
to discourage potentially fruitful avenues of research.

1. Discriminator. We explored adding an additional ad-
versarial loss [7, 14] to obtain more realistic details,
specially from non-visible viewpoints. Nevertheless,
the discriminator was leading to noise in geometry
and incorrect wrinkles, and was often unstable dur-
ing training. In practice, we obtained better results in
geometry by just minimizing L3D label on the real 3D
scans.

2. Hessian Loss [23]. We explored the possibility of reg-
ularizing the predicted Signed Distance Field by en-
couraging small second-order derivatives with respect
to input points, but this was highly memory consuming
and increased training time. We also did not observe



significant changes with respect to regularizing first-
order derivatives via an Eikonal loss [9].

3. Perceiver [11]. Since the transformer architecture is
the memory bottleneck, we explored reducing the di-
mensionality of the Structured 3D Features before as-
signing features to query points. We found, however,
that this was leading to very smooth geometry and tex-
ture. The intuition after this is that denser local fea-
tures are better suited for 3D reconstruction of high-
frequency details.

4. Canonicalization. Our initial attempts explored canon-
icalization as a way to simplify the learning problem
and efficiently utilize the body prior by learning a sin-
gle model in T-Pose. However, we observed that the
canonicalization step is very sensitive to small GHUM
errors, resulting in a lack of high frequencies like wrin-
kles in geometry or details in texture. Therefore we
use our transformer in the posed space and map to
canonical space only when re-posing, by using skin-
ning weights after collecting per-point features.

5. 3D normal supervision on synthetic data. We ex-
plored having an additional loss function to minimize
the difference between the predicted point normals and
groundtruth 3D scan normals, evaluated on on-surface
points. However, this led to smoother geometry, per-
forming similarly to an additional Eikonal regulariza-
tion. We tried unit normalizing ∇xsx before supervi-
sion to have this loss function specifically focused on
the normal direction instead of the magnitude, though
obtaining similar results.

6. Additional loss function to penalize the difference be-
tween imGHUM’s SDF and our predicted SDF. This
acts as a regularization for the learnt SDFs, but was ty-
ing the network excessively to the body and reduced
its capacity to generate loose clothing or recover from
noisy GHUM fits.

7. Pose-dependent SDF estimations. We briefly explored
the possibility of having an additional MLP that takes
GHUM pose/shape and predicts per-point deforma-
tion (both deforming query points or deforming feature
points). The intuition after this is to try to learn addi-
tional pose-dependent effects within training, by also
training on a significant pose diversity. However, the
MLP converged to predict negligible displacements
and we suspect that tackling this task effectively re-
quires tailored data and objective functions.

2. Additional Results
In this section, we provide more analysis and results with

respect to the experiments in the main paper. Figure 1 shows

C

SideSide
Real + synthetic

FrontInput
Only real

Figure 1. Results of the full method (trained on both real and
synthetic data) in comparison to a method trained only from real
images. As observed in this example, training with no synthetic
supervision leads to significant uncertainty in the z-axis during re-
construction. The body template is useful to regularize the process
but the method becomes unable to generate realistic 3D recon-
structions.

C

Front SideInput Back Front Side BackInput

Figure 2. Examples showing the front, side and back views of the
geometry reconstructed from our method. The proposed approach
tackles extreme poses (left) or people with loose clothing (right).

a reconstruction of the full method trained on both real and
synthetic data, in comparison to a method trained only on
real images. We here show side views of the reconstruc-
tions to show the consistency of geometry in all views. In
contrast, when training only on real images, the method is
unable to properly solve the uncertainty along the Z-axis
and often generates artifacts. Figure 2 depicts more results
from the full method, including front, side and back views
for different images. On the left, we show examples of ex-
treme poses and the example on the right depicts a person
with loose clothing. Note that monocular 3D reconstruc-
tion methods are inherently ambiguous w.r.t. depth, and the
use of synthetic data and pose priors during pose estimation
limits some of the ambiguities. Our multi-view extension
further alleviates the problem.

Next, we extend the results presented in the main paper
and provide more qualitative results on different tasks. We
show more monocular 3D Human Reconstruction results in
Figures 3, 4 and 5, showcasing a variety of input poses,
backgrounds, viewpoints and clothing. We also categorize
and present failure cases in Figure 6, presumably all due to
inaccurate GHUM fits or limited training data. We expect
that better GHUM fits and accurate segmentations would
lead to more consistent results on the presented images.
Loose clothing is not well represented in our training set,
since the dataset of real images used for training [2] com-



prises challenging poses of diverse sports mostly on tight
clothing.

We also show additional results of 3D Human relighting
and re-posing in Figures 7 and 8, and extend the 3D vir-
tual try-on experiments from the paper in Figures 9 and 10
with examples of upper-body and lower-body clothes re-
spectively. The input images are shown in the left column
and reference clothing is shown in the upper-row. Note that
the transferred cloth textures are shaded consistently with
the illumination from the original scenes, leading to pho-
torealistic results that are coherent with the original non-
edited 3D reconstruction. More examples are shown in
the Supplementary Video, where we additionally show in-
terpolations between cloth texture, body poses (animation)
and scene illumination. For cloth try-on, the interpolations
showcase a remarkable level of robustness even when inter-
polating cloth features with very different textures, obtained
from diverse body poses or shapes.

Finally, we provide an intuition of the effect of the num-
ber of points/features in the results, in Figure 11. Increas-
ing the number of points leads to sharper reconstructions,
although it does not significantly affect metrics quantita-
tively. Our final model has 18K points sampled on the body
surface, which shows a good balance between memory con-
sumption during training and texture sharpness.



Input image Front Back Albedo Shading Input image Front Back Albedo Shading

Figure 3. Additional qualitative examples from our method.



Input image Front Back Albedo Shading Input image Front Back Albedo Shading

Figure 4. Additional qualitative examples from our method.



Input image Front Back Albedo Shading Input image Front Back Albedo Shading

Figure 5. Additional qualitative examples from our method.



Inaccurate GHUM fits lead to 
missing limbs in extreme poses

Reconstructions inherit self-intersection or pose errors 
from inaccurate body fits

Very loose clothing is not well 
represented in training data

Input image Front geom. Back geom. Albedo Shading Input image Front geom. Back geom. Albedo Shading

Figure 6. Failure cases. We categorize failure cases in three main classes, all of them presumably due to noisy GHUM fits or insufficient
training data.



Input image Relighted Reconstructions

Figure 7. Qualitative results on 3D Human Relighting.



Input image Animated Reconstructions

Figure 8. Qualitative results on animation of 3D reconstructions.



Source clothing

Input image
Figure 9. More examples of cloth texture transfer. We extend the experiment from the main paper, showcasing an example of upper-
body cloth try-on, and show the input images (left) and source clothing (upper-row). The 3D reconstructions look realistic and consistent
accross all examples. Note that we only take one single image from both subject and clothing, and the network re-poses the affected S3Fs,
allucinates occluded texture, and shades the clothing in the new scene.



Source clothing

Input image
Figure 10. More examples of cloth texture transfer. This example features try-on examples from lower-body clothing. See the Supple-
mentary Video for more examples.



Input image 2000 5000 8000 10000 12000 15000 18000

Number of sampled points in the body surface

Figure 11. Qualitative ablation of number of points sampled in the body surface, storing 3D Features. Our final model has 18000 points
which provides the best tradeoff between GPU memory and sharpness. Lower number of points do not affect significantly quantitative
results but are less capable of representing high-frequency details.



References
[1] Thiemo Alldieck, Mihai Zanfir, and Cristian Sminchisescu.

Photorealistic monocular 3d reconstruction of humans wear-
ing clothing. In CVPR, 2022. 2

[2] Eduard Gabriel Bazavan, Andrei Zanfir, Mihai Zanfir,
William T Freeman, Rahul Sukthankar, and Cristian Smin-
chisescu. Hspace: Synthetic parametric humans animated in
complex environments. arXiv, 2021. 1, 3

[3] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Blender Institute,
Amsterdam, 2020. 1

[4] Qifeng Chen and Vladlen Koltun. Photographic image syn-
thesis with cascaded refinement networks. In ICCV, 2017.
2

[5] Cmu graphics lab motion capture database. http://
mocap.cs.cmu.edu/. 1

[6] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on artifi-
cial intelligence and statistics, pages 249–256. JMLR Work-
shop and Conference Proceedings, 2010. 2

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020. 2

[8] Ivan Grishchenko, Valentin Bazarevsky, Andrei Zanfir, Ed-
uard Gabriel Bazavan, Mihai Zanfir, Richard Yee, Karthik
Raveendran, Matsvei Zhdanovich, Matthias Grundmann,
and Cristian Sminchisescu. Blazepose ghum holistic: Real-
time 3d human landmarks and pose estimation. arXiv, 2022.
1

[9] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. ICML, 2020. 3

[10] https://polyhaven.com/. 1
[11] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals,

Andrew Zisserman, and Joao Carreira. Perceiver: General
perception with iterative attention. In International confer-
ence on machine learning, pages 4651–4664. PMLR, 2021.
3

[12] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv, 2014. 2

[13] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. SIG-
GRAPH, 1987. 2

[14] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for gans do actually converge? In
International conference on machine learning, pages 3481–
3490. PMLR, 2018. 2

[15] Prajit Ramachandran, Barret Zoph, and Quoc V Le.
Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017. 2

[16] Renderpeople dataset. https://renderpeople.
com/. 1

[17] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-

tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 1

[18] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In ICCV, 2019. 2

[19] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul
Joo. Pifuhd: Multi-level pixel-aligned implicit function for
high-resolution 3d human digitization. In CVPR, 2020. 2

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NeurIPS, 2017. 2

[21] Hongyi Xu, Eduard Gabriel Bazavan, Andrei Zanfir,
William T Freeman, Rahul Sukthankar, and Cristian Smin-
chisescu. Ghum & ghuml: Generative 3d human shape and
articulated pose models. In CVPR, 2020. 1

[22] Andrei Zanfir, Eduard Gabriel Bazavan, Hongyi Xu,
William T Freeman, Rahul Sukthankar, and Cristian Smin-
chisescu. Weakly supervised 3d human pose and shape re-
construction with normalizing flows. In ECCV, pages 465–
481. Springer, 2020. 1

[23] Jingyang Zhang, Yao Yao, Shiwei Li, Tian Fang, David
McKinnon, Yanghai Tsin, and Long Quan. Critical regu-
larizations for neural surface reconstruction in the wild. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 6270–6279, 2022. 2

http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/
https://polyhaven.com/
https://renderpeople.com/
https://renderpeople.com/

	. Implementation Details
	. Additional Results

