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1. Supplementary Material
1.1. Overview

We provide this supplementary material due to the space
limitation of the main manuscript. The information in this
supplementary material includes: 1) dataset details; 2) im-
plementation details; 3) text label generation; 4) parame-
ter study; 5) more quantitative and qualitative comparisons
with the state-of-the-art.

1.2. Dataset

We conduct experiments over multiple widely adopted
datasets including: 100-shot, AFHQ, CIFAR-10, CIFAR-
100 and ImageNet.

100-shot: 100-shot contains three datasets each of which
has 100 samples of resolution 256 × 256. The three datasets
are 100-shot Obama, 100-shot Grumpy Cat and 100-shot
Panda.

AFHQ: AFHQ consists of face images of three types of
animals including Cat, Dog and Wildlife, each of which has
5k training images. We follow DA [9] and use 160 AFHQ-
Cat images and 389 AFHQ-Dog images (at a resolution of
256 × 256) for training.

CIFAR-10: CIFAR-10 contains 50k training images and
10k validation images with 10 classes. The image resolu-
tion is 32 × 32. In our experiments, three networks are
trained with 100%, 20% or 10% training images, respec-
tively, and the trained models are valuated over all the vali-
dation images.

CIFAR-100: CIFAR-100 contains 50k training images
and 10k validation images of 100 classes. The image res-
olution is 32 × 32. In our experiments, three networks are
trained with 100%, 20% or 10% training images, respec-
tively, and the trained models are evaluated over all the val-
idation data.

*corresponding author.

ImageNet: ImageNet contains 1, 281, 167 training im-
ages of 1000 classes. We employ the resolution 64 × 64 in
our experiments. We trained three networks with different
amounts of training data including ~10%, ~5% and ~2.5%
data. We perform evaluations over all the training images
(i.e., 1, 281, 167 training images).

1.3. Implementation Details

StyleGAN-v2 on 100-shot and AFHQ: For experi-
ments with 100-shot and AFHQ, our KD-DLGAN is built
on top of StyleGAN-v2 as implemented with PyTorch [9].
The learning rate for G and D is 2e − 3. The batch size
is set at 8 and we employ Adam optimizer with β1 = 0,
β2 = 0.99, and ϵ = 10−8. The FID is evaluated on the
whole training set. All models are trained with 1 NVIDIA
V100 GPU.

BigGAN on CIFAR-10 and CIFAR-100: In experi-
ments with CIFAR-10 and CIFAR-100, our KD-DLGAN is
built on top of BigGAN as implemented with PyTorch [9].
Following [9], the learning rate for G and D is set at 2e−4.
The batch size is set at 50. In addition, we use Adam opti-
mizer with β1 = 0, β2 = 0.999, and ϵ = 10−8. We evaluate
FID over the whole validation set. All the models are run
on 2 NVIDIA V100 GPUs.

BigGAN on ImageNet: For experiments on ImageNet,
our KD-DLGAN is built on top of BigGAN as implemented
with PyTorch [9]. We use a learning rate of 1e−4 for G and
4e−4 for D for 100% data setting and decrease the learning
rate of D to 2e− 4 for the 5% and 2.5% data settings. The
batch size is set at 512. In addition, we use Adam optimizer
with β1 = 0, β2 = 0.999, and ϵ = 10−8. We evaluate
FID over the whole training set. All the models are run on
2 NVIDIA V100 GPUs.
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Dataset Probability of applying the designed aggregated loss
0.4 0.5 0.6 0.7 0.8 0.9 1.0

CIFAR-10 (10% data) 15.63 14.72 14.61 14.20 19.48 20.56 21.41

Table 1. Experiments on the probability of applying the designed aggregated loss in aggregated generative knowledge distillation. We
report FID (↓) scores.

Methods CIFAR-10 CIFAR-100
100% data 20% data 10% data 100% data 20% data 10% data

BigGAN [2] 9.07 ± 0.03 8.52 ± 0.10 7.09 ± 0.03 10.71 ± 0.14 08.58 ± 0.04 06.74 ± 0.04
DA [9] 9.16 ± 0.13 8.65 ± 0.14 8.09 ± 0.08 10.66 ± 0.08 09.47 ± 0.14 08.38 ± 0.12
KD-DLGAN 9.38 ± 0.28 9.20 ± 0.24 9.08 ± 0.21 10.99 ± 012. 10.65 ± 0.22 10.26 ± 0.29

Table 2. Comparing KD-DLGAN with the state-of-the-art over CIFAR-10 and CIFAR-100: KD-DLGAN outperforms the state-of-the-art
clearly and consistently by mitigating the discriminator over-fitting. We report IS (↑) scores.
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Figure 1. Qualitative results over 100-shot and AFHQ datasets: KD-DLGAN generates more realistic images than DA [9], the state-of-
the-art data-limited generation method.

1.4. Text Labels

Conditional Datasets: For conditional datasets, we em-
ploy the corresponding image labels as input texts. Hence,
CIFAR-10, CIFAR-100, and ImageNet have 10, 100, and
1000 input texts, respectively. Following [6], we expand
a single word to a sentence with the prompt template "A
photo of a {label}".

Unconditional Datasets: For unconditional datasets, we
pre-define a set of relevant text labels as input texts. In
our experiments, all unconditional datasets (i.e. 100-shot
Obama, 100-shot Grumpy Cat, 100-shot Panda, AFHQ-Cat,
AFHQ-Dog) are face-related. We define text labels for these
datasets based on face expressions, i.e., neutral, happy, sad,
surprise, disgust, anger, fear. Similarly for the conditional



ADA

O
ba

m
a

G
ru

m
py

 C
at

AF
HQ

-C
at

Pa
nd

a
AF

HQ
-D

og

KD-DLGAN

Figure 2. Qualitative results over 100-shot and AFHQ datasets: The generation by KD-DLGAN is clearly more realistic than that by
ADA [3], the state-of-the-art data-limited generation method.

datasets, we expand a single word to a sentence with the
prompt template "A photo of a {label}".

1.5. Parameter Study

For effective GAN training, the designed aggregated
loss in aggregated generative knowledge distillation is con-
trolled by a hyper-parameter p, where the loss is applied
with probability p or skipped with probability 1−p. We per-
form experiments to study how different p affect the gener-
ation performance. Table 1 shows the experimental results
while applying the designed aggregated loss with different
p. We can see that the image generation performs best when
p is 0.7 and is tolerant to p when it lies between 0.5 and 0.7.
However, the performance deteriorates clearly while p is too
large (higher than 0.7) or small (lower than 0.5). We con-
jecture that the knowledge distillation performance would
be overwhelmed by the aggregated loss (can be regarded as
regularization term) when p is too large. On the contrary,
the regularization performance of feature aggregation will
be poor when p is too small. In our study, we fix this hyper-
parameter at 0.7 for all conducted experiments.

1.6. Additional Results

We present more experimental results to demonstrate
that our KD-DLGAN can mitigate the discriminator over-

Methods FFHQ-5k Anime-5k CUB-12k
StyleGAN2 37.88 24.55 24.13
DA 18.76 14.39 13.14
ADA 18.42 14.15 13.60
APA 14.33 13.31 12.99
KD-DLGAN 10.44 9.01 7.21

Table 3. Comparison with the state-of-the-art over FFHQ, CUB
and Anime: All the compared methods employ StyleGAN-v2 [5]
as backbone. We report FID(↓) averaged over three runs.

fitting and achieve superior image generation effectively.
Table 2 shows the comparison over CIFAR-10 and CIFAR-
100 datasets. Evaluating with inception score (IS) [7], we
can observe that KD-DLGAN outperforms the state-of-the-
art consistently, especially when training samples are lim-
ited. The superior generation performance is largely at-
tributed to our designed generative knowledge distillation
techniques in KD-DLGAN, which mitigates the discrimi-
nator overfitting and improves the generation performance
effectively.

Fig 1 and 2 qualitatively show that KD-DLGAN out-
performs the state-of-the-art (i.e., DA [9] and ADA [3])



Method AGKD CGKD Imagenet-10% CUB-12k

DA 32.82 13.14

✓ 23.98 8.98
✓ 24.55 9.52

Ours ✓ ✓ 19.99 7.21

Table 4. Quantitative ablation study of KD-DLGAN: AGKD and
CGKD in KD-DLGAN both improves the generation performance
over the baseline DA [9]. KD-DLGAN performs the best as
AGKD and CGKD complement each other. The FIDs (↓) are av-
eraged over three runs.

in data-limited image generation, especially in terms of the
generated shapes and textures.

We conducted additional experiments over FFHQ [4] (5k
samples), CUB [8] (12k samples) and Anime [1] (5k sam-
ples), where all the image resolutions are 256 × 256. As
Table 3 shows, the proposed KD-DLGAN achieves superior
FID for all the suggested datasets. Note all our experiments
are performed with one NVIDIA Tesla V100 GPU.

We conducted additional quantitative ablation studies
over the Imagenet with 10% data where the image resolu-
tion is 64 × 64 and CUB dataset with 12k samples where
the image resolution is 256 × 256. As the Table 4 shows,
the results on the two new datasets are consistent with that
in Table 4 in our manuscript. Both AGKD and CGKD im-
proves generation performance clearly and combining the
two complementary designs leads to further improvement
consistently.
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