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1. Theoretical Derivations
1.1. Maximum Likelihood Estimation

Recall that ∇θ log pθ(x) = Epθ(z|x)[∇θ log pβ0(x|z)] +
Epθ(z|x)[∇θ log pα,β>0(z)], where θ = (α, β0, β>0). For
the learning gradient of prior model (αi, β>0), we compute
Epθ(z|x)[∇αi,β>0

log pα,β>0
(z)] as

∇αi
log pθ(x) = Epθ(z|x)[∇αi

log pα,β>0
(z)] (1)

= Epθ(z|x)[∇αi
fαi

(zi)]−∇αi
log Zα,β>0

∇βi
log pθ(x) = Epθ(z|x)[∇βi

log pα,β>0
(z)] (2)

= Epθ(z|x)[∇βi
log pβi

(zi|zi+1)]−∇βi
log Zα,β>0

where Zα,β>0 =
∫
exp [fα(z)]pβ>0(z)dz. Therefore, for

∇αi
log Zα,β>0

, we have

∇αi log Zα,β>0 (3)

=
1

Zα,β>0

∫
∇αi exp [

L∑
i=1

fαi(zi)]pβ>0(z)dz

=

∫
pα,β>0

(z)∇αi
fαi

(zi)dz

= Epα,β>0
(z)[∇αi

fαi
(zi)]

For ∇β>0 log Zα,β>0 , we have

∇βi log Zα,β>0 (4)

=
1

Zα,β>0

∫
exp [fα(z)]∇βi

L−1∏
i=1

pβi
(zi|zi+1)p(zL)dz

=

∫
pα,β>0

(z)∇βi
log pβi

(zi|zi+1)dz

= Epα,β>0
(z)[∇βi log pβi(zi|zi+1)]

By applying Eqn.3 to Eqn.1, we have

∇αi
log pθ(x) = Epθ(z|x)[∇αi

fαi
(zi)] (5)

− Epα,β>0
(z)[∇αi

fαi
(zi)]

By applying Eqn.4 and Eqn.2, we have

∇βi
log pθ(x) = Epθ(z|x)[∇βi

log pβi
(zi|zi+1)] (6)

− Epα,β>0
(z)[∇βi

log pβi
(zi|zi+1)]

1.2. Variational Learning

Recall that L(θ, ω) = DKL(qω(x, z)||pθ(x, z)). We
can view such joint KL as a surrogate of the MLE ob-
jective with the KL perturbation term, i.e., L(θ, ω) =
DKL(pdata(x)||pθ(x)) +DKL(qω(z|x)||pθ(z|x)). Specifi-
cally, we have

DKL(pdata(x)||pθ(x)) +DKL(qω(z|x)||pθ(z|x))
= −Epdata

[log pθ(x)] +DKL(qω(z|x)|pθ(z|x)) + C

= Epdata

[
Eqω(z|x)

(
log

qω(z|x)
pθ(z|x)

)
− log pθ(x)

]
+ C

= Epdata

[
−Eqω(z|x)

[
pθ(x, z)

qω(z|x)

]]
+ C

= Epdata
[−L̃(θ, ω)] + C

where C ≡ −H(pdata(x)) is the entropy of the empirical
data distribution and can be treated as constant. L̃(θ, ω)
is a lower bound of the log-likelihood log pθ(x) typically
known as ELBO [3]. Notice that, with the joint EBM prior
model, we consider the KL optimization between the ag-
gregate posterior and EBM prior model, i.e., L̃(θ, ω) =
Eqω(z|x)[log pβ0

(x|z)] − DKL(qω(z|x)||pα,β>0
(z)), while

VAEs compute DKL(qω(z|x)||pβ>0
(z)), where pβ>0

(z) is
the Gaussian prior model.

Therefore, we can compute the gradient ∇θ,ωL̃(θ, ω)
to jointly update the inference, generator and EBM prior
model. Learning the prior model (αi, β>0) involves com-
puting the derivative of log Zα,β>0

, which can be referred to
Eqn.3 and Eqn.4.

1.3. Change of Variable

We observe that using Langevin dynamic on latent
space for deep hierarchical structures can be heterogeneous,
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where latent variables may be formed in different shapes
(e.g., spatial variables and vectors) and can rely on the
distribution that has a high variance. Therefore, we fur-
ther consider ϵz-space, which has a unit variance and can
make the prior sampling more efficient and effective. For
brevity, we take a two-layer structure as an example, i.e.,
z = (z1, z2), where for L layers, the derivation is the same.
Deterministic transformation Tβ>0

: For generator model
pβ>0

(z1, z2), z1 follows conditional Gaussian distribution
as p(z1|z2) ∼ N (µβ1

(z2), σβ1
(z2)), while p(z2) is as-

sumed to be unit Gaussian, such that p(z2) ∼ N (0, Id).
Let (ϵz1 , ϵz2) be the re-parametrization variables, we have
Tβ>0 defined as

z2 = T z2

β>0
(ϵz2) = ϵz2 (7)

z1 = T z1

β>0
(ϵz1

, ϵz2
) = µβ1

(z2) + σβ1
(z2) · ϵz1

(8)

T z2

β>0
(ϵz2

) and T z1

β>0
(ϵz1

, ϵz2
) are invertible and usually re-

ferred as reparameterization trick used in VAEs. Thus, the
re-parametrization variables (ϵz1

, ϵz2
) can be independently

drawn from Gaussian noise, i.e., (ϵz1 , ϵz2) ∼ pϵ(ϵz1 , ϵz2),
where pϵ(ϵz1 , ϵz2) = pϵ1(ϵz1)pϵ2(ϵz2) and pϵi(ϵzi) ∼
N (0, I||ϵzi ||).
Toward ϵz-space pα,β>0

(ϵz1
, ϵz2

): With invertible trans-
formation Tβ>0

, we can apply change of variable rule as

pβ>0
(z1, z2) = pϵ(ϵz1

, ϵz2
)|det(JT−1

β>0

)| (9)

pϵ(ϵz1
, ϵz2

) = pβ>0
(z1, z2)|det(JTβ>0

)| (10)

where JTβ>0
is the Jacobian of Tβ>0

.
For brevity, we denote ϵz = (ϵz1

, ϵz2
), then pβ>0

(z) =
pϵ(ϵz)|det(JT−1

β>0

)| and pϵ(ϵz) = pβ>0
(z)|det(JTβ>0

)|.
Recall that the proposed joint EBM prior model is defined
as pα,β>0(z). With change of variable, pα,β>0(ϵz) is

pα,β>0
(ϵz) = pα,β>0

(z)|det(JTβ>0
)|

=
1

Zα,β>0

exp fα(Tβ>0
(ϵz))pβ>0

(z)|det(JTβ>0
)|

=
1

Zα,β>0

exp fα(Tβ>0(ϵz))pϵ(ϵz)

Therefore, sampling from pα,β>0
(z) can be done by first

sampling ϵz from pα,β>0
(ϵz) and then using deterministic

transformation Tβ>0
to obtain z as Eqn.7 and Eqn.8. Com-

pared to latent space pα,β>0(z), the ϵz-space pα,β>0(ϵz) in-
dependently draws samples from the same Gaussian distri-
bution, and such distribution has a unit variance allowing
us to use the fixed step size of Langevin dynamic to ef-
ficiently and effectively explore the latent space at differ-
ent layers for deep hierarchical structures. For experiments
with backbone model BIVA [4] or NVAE [6], we adopt
similar reparametrized sampling scheme as VAEBM [7] via
public code1.

1https://github.com/NVlabs/VAEBM

2. Additional Experiments
2.1. Analysis of EBM prior

Latent visualization: To better understand the effective-
ness of the proposed EBM prior model, we pick MNIST
data with only digit classes ‘1’ and ‘0’ available, on which
we train our 2-layer model with the latent dimension of each
layer set to be 2. We visualize the transition of Langevin dy-
namics on each layer in Fig.1, where latent variables can be
successfully tilted via EBM to match the multi-modal pos-
terior, which suggests the expressiveness of our EBM prior.

Figure 1. Langevin transition on latent codes (bottom: z1, top:
z2). Blue, Orange color indicate prior and posterior, respectively.

Complexity of EBM. The energy function fαi
(zi) is pa-

rameterized by a small multi-layer perceptron. To better
understand the effectiveness of our EBM, we fix the gen-
erator network pβ0

(z|x) and increase hidden units (nef) of
energy functions. We train our model on CIFAR-10 with
nef increasing from 10 to 100. The results are shown in
Tab.1. The larger capacity of the EBM could in general ren-
der better model performance.

nef nef = 10 nef = 20 nef = 50 nef = 100

FID 69.73 68.45 67.88 66.32

Table 1. FID for increasing hidden units (nef) of EBM

Informative prior vs. complex generator: We examine
the expressivity endowed with the joint EBM prior by
comparing it to hierarchical Gaussian prior model. We
use the same experimental setting as reported in Tab.5
in main text and increase the complexity of generator
model for hierarchical Gaussian prior. The FID results
are shown in Tab.2, in which the Gaussian prior models
exhibit an improvement in performance as the generator
complexity increases. However, even with eight times more
parameters, hierarchical Gaussian prior models still have
an inferior performance compared to our joint EBM prior
model.

Ours same generator 2x parameters 4x parameters 8x parameters

28.60 42.03 39.82 37.75 36.10

Table 2. Comparison on Gaussian prior and our EBM prior.



Figure 2. Generated images on CIFAR-10. Left: HVAE. FID =
79.57 Right: Ours. FID = 49.50

2.2. Image Synthesis

NVAE with Gaussian decoder: We use the NVAE2 that
has a mixture discrete logistic decoder in the main text
for CIFAR-10 and CelebA-HQ-256. In addition, we also
consider NVAEs with a Gaussian decoder. Note that the
discrete logistic decoder aims to conditionally models the
pixels of images between different channels, while Gaus-
sian decoder is a statistical simple model that predicts pix-
els independently. We use the NVAE that has 30 groups
on CIFAR-10 and 20 groups on CelebA-HQ-256 as used
in [1, 7]. The results of FID and parameter complexity are
shown in Tab.3, where our EBM prior still can largely im-
prove the generation performance while only accounting for
very small overhead in parameter complexity.

NVAE / EBM FID Parameters NVAE Group

CIFAR10 52.45 / 14.92 130M / 10M (7.6%) 30
CelebA HQ 256 46.32 / 22.86 365M / 9M (2.4%) 20

Table 3. Parameter complexity and FID results based on NVAE
with Gaussian decoder.

Other backbone models: We also examine the generation
performance of our joint EBM prior on other multi-layer
generator models, such as BIVA and HVAE. We implement
the HVAE and BIVA using the provided codes34. We show
the image synthesis and corresponding FID scores in Fig.2
and Fig.3. It can be seen that the proposed method is expres-
sive in generating sharp image synthesis and can be applied
to different multi-layer generator models.

2.3. Hierarchical Representations

Hierarchical reconstruction. To examine the hierarchical
representation, we further conduct hierarchical reconstruc-
tion by replacing the inferred latent vectors at the bottom
layers with the ones from the prior distribution. We use
BIVA [4] as our backbone model for multi-layer genera-
tor and inference model, and we use Langevin dynamic for

2https://github.com/NVlabs/NVAE
3https://github.com/JakobHavtorn/hvae-oodd
4https://github.com/vlievin/biva-pytorch

Figure 3. Generated images on CIFAR-10. Left: BIVA. FID =
66.37 Right: Ours. FID = 25.87

Figure 4. Hierarchical sampling with NVAE backbone on CelebA-
HQ-256.

prior sampling. Specifically, we run prior Langevin sam-
pling for the latent codes at lower layers (e.g., zi≤k) with
the latent codes at top layers (from BIVA inference model)
remaining fixed (using Eqn.20 in main text). We train our
model on CelebA-64 and show hierarchical reconstructions
in Fig.5.

(a) Example. (b) Sampling from bottom layer to top layer.

Figure 5. Hierarchical reconstruction

We observe that the details in reconstructions can be
gradually replaced by common features as more layers of
latent variables are sampled from the prior distribution. For
example, the sunglass first becomes a more common glass
and then eventually disappears. This concurs with the ob-
servation in [2], suggesting that our model carries differ-
ent levels of abstract representations within the hierarchical
structure.



Additional results for OOD detection: In addition, we
compute AUROC, AUPRC and FPR80 for BIVA and our
EBM prior model in OOD detection. We use the log-
likelihood L>k and a ratio type LLR>k [2] as the deci-
sion functions for BIVA. If the low-level representations are
well-learned at the bottom layers, using decision function
with higher k should render better detection performance
for reducing impact of shared low-level features. The re-
sults are shown in Tab.4.

BIVA / Ours AUROC↑ AUPRC↑ FPR80↓

L>0 / L>0
EBM 0.066 / 0.087 0.339 / 0.319 0.997 / 0.999

L>3 / L>3
EBM 0.307 / 0.324 0.427 / 0.438 0.970 / 0.972

L>6 / L>6
EBM 0.436 / 0.449 0.514 / 0.528 0.942 / 0.942

L>9 / L>9
EBM 0.866 / 0.870 0.855 / 0.858 0.230 / 0.227

LLR>9 / LLR>9
EBM 0.885 / 0.927 0.876 / 0.918 0.200 / 0.113

Table 4. AUROC, AUPRC and FPR80 for BIVA and our EBM
prior model on CIFAR10(in) / SVHN(out).

3. Experiment Details
Fréchet Inception Distance: We compute FID scores with
30,000 generated images for CelebA-HQ-256 and 50,000
generated images for other data.
Implementations: For comparisons in generator models
with informative prior, we train our model on SVHN (32
x 32), CIFAR-10 (32 x 32), and CelebA-64 (64 x 64),
where we use full training split of SVHN and CIFAR-10
and 40,000 cropped training examples of CelebA-64 fol-
lowing the protocol in [5]. All training images are resized
and scaled to [-1, 1]. For applying to NVAE backbone mod-
els, we train our joint EBM prior on latent variables of all
layers. The implementations of models on CelebA-64 and
EBMs for NVAE backbone are shown in Tab.5. We denote
the operation of convolution and transposed convolution as
conv(k, c, s) and convT(k, c, s), where k is the kernel size,
c is the channel number and s is the stride number, and we
denote LeakyReLU as LReLU.

4. Additional qualitative results:
We show additional image synthesis for CIFAR-10,

LSUN-Church-64 and CelebA-HQ-256 in Fig.6, Fig.8,
Fig.10 and Fig.11. The additional visualizations of langevin
transition that starts from pβ>0(z) toward the learned EBM
prior distribution pα,β>0(z) are shown in Fig.7 and Fig.9.

Layers In-Out Size

EBM fαi
(zi) for NVAE backbone

Input: zi (h x w x c)
N x conv (4, 64, 2), LReLU (4 x 4 x 64)
N x Linear (200), LReLU 200

Linear (1) 1

Generator Model pβ1(z1|z2)
Input: z2 100

Linear (200), LReLU 200
Linear (200), LReLU 200

Linear (200) 200
Split for µz1and log σz1 100, 100

Generator Model pβ0(x|z)
Input: z1 (1 x 1 x 100)

convT (4, 1024, 1), LReLU (4 x 4 x 1024)
convT (4, 512, 2), LReLU (8 x 8 x 512)
convT (4, 256, 2), LReLU (16 x 16 x 256)
convT (4, 128, 2), LReLU (32 x 32 x 128)

convT (4, 3, 2), Tanh (64 x 64 x 3)

Inference Model qω2
(z2|z1)

Input: z1 100
Linear (200), LReLU 200
Linear (200), LReLU 200

Linear (200) 200
Split for µz2

and log σz2
100, 100

Inference Model qω1
(z1|x)

Input: x (64 x 64 x 3)
conv (4, 128, 2), LReLU (32 x 32 x 128)
conv (4, 256, 2), LReLU (16 x 16 x 256)
conv (4, 512, 2), LReLU (8 x 8 x 512)

conv (4, 1024, 2), LReLU (4 x 4 x 1024)
conv (4, 200, 1) (1 x 1 x 200)

Split for µz1
and log σz1

100, 100

EBM fα1
(z1)

Input: z1 100
Linear (200), LReLU 200
Linear (200), LReLU 200
Linear (200), LReLU 200
Linear (200), LReLU 200

Linear (1) 1

EBM fα2(z2)

Input: z2 100
Linear (100), LReLU 100
Linear (100), LReLU 100

Linear (1) 1

Table 5. Network structures for generation, inference and EBMs
on CELEBA-64 and EBM structure for NVAE backbone models.



Figure 6. Generated images on CIFAR-10. Samples are uncurated.

Figure 7. Langevin transition on CIFAR-10.



Figure 8. Generated images on LSUN-Church-64. Samples are uncurated.

Figure 9. Langevin transition on LSUN-Church-64.



Figure 10. Generated images on CelebA-HQ-256 (temperature t=0.7). Samples are uncurated.

Figure 11. Generated images on CelebA-HQ-256 (temperature t=1.0). Samples are uncurated.
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