
Disentangling Writer and Character Styles for Handwriting Generation
Supplementary Material

Gang Dai1*, Yifan Zhang2∗, Qingfeng Wang1, Qing Du1, Zhuliang Yu1,
Zhuoman Liu3, Shuangping Huang1,4†

1South China University of Technology, 2National University of Singapore,
3The Hong Kong Polytechnic University, 4Pazhou Laboratory

eedaigang@mail.scut.edu.cn, yifan.zhang@u.nus.edu, eehsp@scut.edu.cn

A. Overview
We organize our supplementary material as follows.

• In Sec. A.1, we provide more implementation details.

• In Sec. A.2, we provide more visualization examples
for spectrum analysis of two style representations.

• In Sec. A.3, we describe additional related works
about handwriting generation and review the works in
font generation.

• In Sec. A.4, we provide qualitative results of offline
Chinese handwriting generation with a comparison to
previous state-of-the-art works.

• In Sec. A.5, we study the effect of the sampling ra-
tio α and compare different combination strategies in
decoder based on online Chinese handwriting dataset.

• In Sec. A.6, we provide the discussions on the format
of style inputs.

• In Sec. A.7, we conduct failure case analysis.

• In Sec. A.8, we report more evaluation metrics on
Japanese dataset.

• In Sec. A.9, we conudct more experiments on Indic
dataset.

• In Sec. A.10, we give detailed data representations of
online characters.

• In Sec. A.11, we describe more details about the pen
moving prediction and pen state classification losses.

• In Sec. A.12, we show a large number of generated
online samples, covering Chinese, Japanese, Indic and
English scripts.

*Authors contributed equally.
†Corresponding author

A.1. More Experimental Details.

A.1.1 Implementation Details of Metrics

DTW The lower DTW distance, the better quality of the
generated characters. For a more robust evaluation metric,
we normalize the DTW distance by the length of real online
characters to eliminate the effects of different lengths.
Content and Style Score We use the content recognizer
and writer identifier to evaluate the Content and Style Score
of generated handwritings, respectively. We give the im-
plementation details of the two recognizers below. For the
content recognizer [23], we train it on the training set. The
optimizer is Adam with the learning rate of 0.001 and the
batch size is set to 256. In total, we train four content rec-
ognizers on four training sets, i.e., Chinese, Japanese, Indic
and English datasets, respectively. Tab. 1 summarizes their
recognition results on the corresponding test sets. For the
writer identifier, we train it on the handwritings belonging
to the test writers. Different from the content recognizer re-
ceiving a character once, the writer identifier takes 15 char-
acters written by the same person as one input set [34]. Sim-
ilarly, we use the Adam optimizer to train four writer iden-
tifiers with the batch size of 128, learning rate of 0.001. We
report their recognition accuracy in Tab. 2.
User Preference Study At each time, given a style refer-
ence along with several candidates generated by different
methods, participants are required to pick up the most sim-
ilar candidate with the reference. We finally collect 1500
valid responses contributed by 50 volunteers.

A.1.2 Implementation Details of Robustness Training

After removing the redundant points of online characters,
we follow [32] to normalize the absolute coordinates of
points into a standard interval. As mentioned in Sec. 3.3,
we define three states “pen-down”, “pen-up” and “pen-end”
respectively, which are denoted as m1,m2,m3. Specifi-
cally, pen-down means that the pen is touching the paper
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Table 1. Quantitative evalua-
tions of four content recogniz-
ers on four datasets.

Datasets Acc.(%)

Chinese [31] 95.43
Japanese [20] 93.61
Indic1 94.48
English [31] 80.12

Table 2. Quantitative evalua-
tions of four writer identifiers
on four datatsets.

Datasets Acc.(%)

Chinese [31] 99.98
Japanese [20] 99.64
Indic1 72.54
English [31] 20.57

now, and the current and following points will be connected
by strokes. Pen-up indicates that the pen has just finished
a stroke and is to be lifted up. Pen-end means that the pen
has finished writing a completed character. It is obvious that
pen-end data points are much less than the other two classes.
To solve the biased dataset issue, we pad each online char-
acter Y= [y1, ..., yL] to a fixed length Nmax, where Nmax

is the length of the longest character in our training dataset
and L is the length of Y , following [9]. As L is usually
shorter than Nmax, we set yi to be (0, 0, 0, 0, 1), for i > L.
During training, we set the temperature τ=0.07. Follow-
ing [23], we use the Gaussian mixture model (GMM) with
m=20 bivariate normal distributions, i.e., the final output
Ot ∈ R123.

A.1.3 Implementation Details of Baseline Methods

Drawing&FontRNN As mentioned in Sec. 4.1, we re-
implement the variants of Drawing [32] and FontRNN [24]
by adding a style branch proposed in DeepImitator [34].
Specifically, the variants first leverage the CNN en-
coder [34] to extract the style vector from the style images,
then, following DeepImitator [34], they concatenate the ob-
tained vector with the desired character embedding, which
is finally fed into their decoder to generate stylized online
handwritings.
WriteLikeYou-v1 adopts the CNN backbone [34] as its
content and style encoder.
WriteLikeYou-v2 employs the CNN-Transformer architec-
ture as its content and style encoder. Each encoder is a
sequential combination of a standard Resnet18 [10] and
a transformer consisting of 2 standard self-attentions lay-
ers [27].

A.1.4 Implementation Details of DTW Matrix

As mentioned in Sec. 4.2, we generate two groups of char-
acters {ai}Ti=1 and {bj}Tj=1 using different style inputs,
where T is the number of test writers, ai= [a1, ..., aM ] and
bj= [b1, ..., bM ] denote the M characters belonging to the
writer wi and wj , respectively. Next, we formulate the av-

erage DTW distance between ai and bj as:

dave(a
i,bj)=

1

M

M∑
m=1

d(am, bm), (1)

where d(·, ·) is the DTW distance between two characters.
Finally, we denote the DTW matrix C=(cij) ∈ RT×T ,
where cij can be formulate as:

cij=dave(a
i,bj). (2)

In particular, when i=j, cij indicates the average DTW dis-
tance between generated characters using different style ref-
erences belonging to the same person.

A.1.5 Dataset Details

Japanese Dataset TUAT HANDS [20] database contains
about 3 million online handwritten Japanese characters be-
longing to 271 writers. We randomly select 216 writers for
training and 55 writers for testing. Similarly, we use the
Ramer–Douglas–Peucker algorithm (ϵ=2) to preprocess the
online characters. After simplification, the maximum se-
quence length of characters reaches 770, which is a trou-
ble for training RNN [3]. For a fair comparison with the
previous RNN-based works [34], we drop characters with
points more than 150, accounting for about 2% of the total
datasets [23]. After that, the average length of characters
is shortened to 68. We render style images from processed
online characters and use easily obtainable printed font as
content references.
Indic Dataset Tamil dataset1 consists of samples of 156 In-
dic character classes written by 169 people, which offers an
official train set and test set, i.e., 117 writers for training
and 52 writers for testing. Similarly, we remove the redun-
dant points of characters via Ramer–Douglas–Peucker al-
gorithm (ϵ=2) and discard characters with points more than
150. After that, the average sequence length of characters
are reduced to 88. We use online Indic characters to render
style images. As for content references, we use character
embeddings [32] instead of offline images. This is because
Tamil encodes characters to special indexes that can not be
directly matched with the printed font in UTF-82 Format.
Briefly, each character embedding is a latent vector embed-
ded by a class label.
English Dataset In total, we have 53,248 English charac-
ters [18] written by 1,020 persons for training, and 3,120
characters [31] from 60 writers for testing, where the char-
acters written by each writer cover 52 classes. Similarly,
the Ramer–Douglas–Peucker algorithm (ϵ = 2) is adopted
to remove redundant points of characters, leading to an av-
erage sequence length of 30. We render style images using

1http : / / lipitk . sourceforge . net / datasets /
tamilchardata.htm

2https://www.utf8.com

http://lipitk.sourceforge.net/datasets/tamilchardata.htm
http://lipitk.sourceforge.net/datasets/tamilchardata.htm
https://www.utf8.com


coordinate points of online characters and employ printed
English font as content images.

A.2. More Visualisations on Spectrum Analysis.

In Fig. 1, we provide additional frequency magnitude vi-
sualizations for writer-wise and character-wise style repre-
sentations, respectively. Clearly, the results indicate that
character-wise styles focus on more high-frequency infor-
mation, while writer-wise styles mainly pay attention to
low-frequency information.

A.3. More Related Work

Additional Handwriting Generation Works Early tra-
ditional approaches are mainly designed to generate Latin
characters. Two-step methods [17,28] generate isolated let-
ters, and then concatenate them to produce a whole word.
These methods rely on handcrafted rules and only generate
handwritings with limited variations.

With the rapid development of deep learning, Recur-
rent Neural Networks (RNNs) and GANs are introduced to
generate authentic handwritings [5, 8] conditioned on de-
sired content labels. But these methods are unable to im-
itate the calligraphic styles of reference samples. Deep-
WriteSyn [26], Sketchformer [22] and CoSE [1] condi-
tion the generative process on online handwriting trajecto-
ries. Specifically, DeepWriteSYN [26] introduces the Vari-
ational Autoencoder to synthesize realistic forgeries based
on given genuine handwritten signatures. Transformer-
based methods (e.g., Skecthformer [22] and Cose [1]) adopt
the encoder-decoder architecture for reconstructing hand-
drawn sketches. However, it is difficult to generalize these
methods [1, 22, 26] to multi-style handwriting generation
tasks. Specifically, they are confused about using which
handwriting style to decorate the given textual content since
they lack specific style guidance.

As for handwritten Chinese characters, some previous
methods [15, 16, 35] extract components (i.e., strokes and
radicals) of characters via expert knowledge and then as-
semble them properly to generate the character. However,
these methods rely on hundreds of references, which is
labor-intensive.

Font Generation Generative Adversarial Networks
(GANs) [6] open a new door for font generation and bring
amazing performance gains. zi2zi [25] regards font gener-
ation as an image translation task and achieves diverse font
style transfer via a condition GAN. MC-GAN [2] generates
the whole set of letters with a consistent style by observ-
ing only a few examples via the proposed glyph genera-
tion network and texture transfer module. Later, EMD [33]
and TET-GAN [30] learn the disentangled representations
for contents and styles, and thus achieve the unseen style
transfer. To further generate high-quality characters, some
component-based methods are proposed to take auxiliary

annotations (e.g., stroke and radical decomposition) as in-
puts [12, 19, 21] or supervisions [11, 14]. However, all of
the above works do not explicitly consider the geometric
deformation of fonts. DG-font [29] introduces a feature de-
formation skip connection to conduct spatial deformation,
thus performing better on cursive characters. Nonetheless,
the advanced DG-font struggles to address the large geo-
metric variations, as shown in Fig. 3.

A.4. Offline Chinese Handwriting Generation.

Experimental Setting. To demonstrate the superior-
ity of the proposed offline-to-offline handwriting generation
framework, we use the offline character images of ICDAR-
2013 competition database [31], which contains 60 writers
and 3755 different Chinese characters for each writer. We
randomly select 80% of the entire dataset as the training
set, and the remaining 20% as the test set. As for content
images, we use the popular average Chinese font [12]. In
our experiments, we resize input images to 64 × 64. We
insert an extra ornamentation network [29] following the
proposed SDT to constitute our offline handwriting gener-
ation method. More specifically, our offline method adopts
the following pipeline: first generating online handwritings
with large shape changes conditioned on input images via
the proposed SDT, and rendering offline character images
by connecting coordinate points in generated handwriting
trajectories, finally decorating the offline characters with
realistic stroke width, ink-blot, etc. via the ornamentation
network [29].

We compare our offline generation method with popular
font generation and handwriting image generation works.
Specifically, (1) font generation methods include zi2zi [25]
and DG-FONT [29]. (2) handwriting image generation
methods, such as GANWriting [13] and HWT [4] are con-
sidered compared methods.

Qualitative Comparison. Fig. 3 shows qualitative com-
parison between our method with four competitors. To en-
sure fair comparisons, we randomly select source and tar-
get characters with the same textual contents. The rows
of “Source” present standard characters with different con-
tent. Each row of “Target” presents characters belonging
to the same writer. We can observe that the handwritten
characters generated by our method (rows of “Ours”) yield
the most similar styles to target images in terms of geomet-
ric shape and ink-blot. Besides, serious artifacts (e.g., blur
and collapsed character structure) appear on the handwrit-
ings generated by zi2zi (rows of “Zi2zi”) and HWT (rows
of “HWT”). There are different degrees of stroke missing
in the handwritings generated by GANWriting (rows of
“GANW.”) and DG-Font (“rows of DG-F.”). Moreover, ex-
cept our method, other methods struggle to synthesize the
stroke width and ink-blot similar to the target characters.

Further, we provide more qualitative results with a com-
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Figure 1. Frequency magnitude visualizations belong to 7 writers. Each spectrum map is averaged over 100 Chinese character samples.

Table 3. Effect of sampling ratio α. Our SDT works well with a
low sampling ratio (25%).

Sampling Ratio 0.25 0.50 0.75 1.00

Style Score ↑ 94.50 92.07 91.91 91.54

Table 4. Evaluation of different combinations between q and
{yj}t−1

j=1.

Combination Style Score ↑ Content Score↑ DTW ↓
Concat 91.61 96.95 0.8976

Ours(SDT) 94.50 97.04 0.8789

parison to GANWriting and DG-Font in Fig. 4-Fig. 7.

A.5. More Ablation Studies on Online Chinese
Handwriting Dataset.

Effect of sampling ratio α. We conduct ablation stud-
ies to explore the effect of sampling ratio α on the test set.
Tab. 3 summarizes the experimental results in terms of the
Style Score. From these results, we observe that a relatively
low sampling ratio α (i.e., 25%) achieves the best perfor-
mance. The results indicate that the lower α guides our
SDT to focus on the more fine-grained style pattern, which
contributes to improving the generation performance of the
proposed method in terms of the style imitation.

Evaluation of different combinations between the
content feature q and previous points {yj}t−1

j=1. To eval-
uate the effect of different combination strategies between
q and {yj}t−1

j=1, we re-implement a variant of our method
by concatenating q with each point yj ∈ {yj}t−1

j=1 and com-
pare it with our method on the test set. As presented in
Tab. 4, we find that our combination strategy improves the
style consistency without decreasing content correctness of
the generated results. This indicates that our method is able
to draw global dependencies between q and {yj}t−1

j=1 un-
like previous RNN-based methods [34] that suffer from the
forgetting phenomenon [7], which demonstrates the effec-
tiveness of the proposed method.

Evaluation of different combinations between the
content feature q and style representations, i.e., E and

Table 5. Effect of different combinations between q, E and G.

Combination Style Score ↑ Content Score↑ DTW ↓
Concat 78.12 96.88 0.8933

Ours(SDT) 94.50 97.04 0.8789

G. To demonstrate the effectiveness of our attention-based
combination strategy (as mentioned in Sec. 3.3) between q,
E and H , we realize a new version of our SDT by directly
concatenating q with E and H . Specifically, the new ver-
sion takes previous points as the query vector, which then
attends to combined content and style features. The experi-
mental results are reported in Tab. 5. From these results, our
method obtains better performance in terms of three quan-
titative metrics, especially a 16.38% improvement in Style
Score, embodying the superiority of our SDT.

Style Set

Target

Ours

…

Ours

WriteLi.

Target

(a) (b)Figure 2

A.6. Discussions on the format of style inputs

As described in Sec.1, online trajectories contain more
style information (e.g., the order of writing). However, get-
ting trajectories requires users to use specific equipment
(e.g., tablets and electric pens), making the methods (that
use trajectories as inputs, e.g., WriteLikeYou [23]) non-
portable in real applications [41]. Instead, we explore of-
fline images as inputs, which are easier for users to ob-
tain (e.g., through phones). As shown in Fig. 2 (a), by
taking some pictures of the user’s handwriting set as the
style reference, our method can readily generate the target-
stylized online characters. In addition, compared with orig-
inal WriteLikeYou [23], our method receives less input in-
formation, but we still achieve comparable performance
with it, in terms of Style Score (94.50% vs. 92.85%) and
Content Score (97.04% vs. 97.92%). Overall, our method
has better applicability in real scenarios.



Table 6. Additional quantitative evaluations of our SDT and com-
petitors on Japanese dataset.

Methods Style Score ↑
Drawing [32] 20.67
DeepImitator [34] 25.80
WriteLikeYou-v2 [23] 32.88
SDT(Ours) 41.85

A.7. Analysis of failure cases

We provide some failure cases in Fig. 2 (b), where our
SDT fails to imitate the overall style (e.g., glyph slant and
aspect ratios) for some Indic characters. However, thanks
to our disentangling scheme, SDT can still capture their de-
tailed style (e.g., stroke location and curvature), while pre-
vious methods (e.g., WriteLikeYou) cannot imitate the style
of target characters at all.

A.8. More Evaluation metrics on Japanese Dataset.

We report the experimental results on Japanese dataset in
Tab. 6, in terms of Style Score. From these results, our SDT
outperforms the second best, i.e., WriteLikeYou-v2 [23], by
a large margin (41.85% vs. 32.88%), which further demon-
strates our method has a better imitation performance in re-
spect of handwriting styles regardless of the script type.

A.9. More Experiments on Indic Dataset.

As described in Sec. 4.3, previous works [23,32] achieve
very poor generation results (e.g., Content Score of 0.02) in
Indic scripts, which means generating Indic handwritings
with certain contents and specific styles may be too diffi-
cult for them. To this end, we reduce the difficulty of the
Indic handwriting generation task and condition the gener-
ative process only on character contents. Quantitative com-
parison further demonstrates the superiority of our method.
We detail the experimental setting and results below.

For this new task, we still conduct experiments on Tamil1

dataset to compare our method with other competitors (i.e.,
Drawing [32] and WriteLikeYou [23]). For a fair com-
parison, without any style reference, all methods take in-
put as the content reference (i.e., character embeddings
[32]) and aim to synthesize handwritings consistent with the
given content. Since Drawing [32] is initially designed for
content-conditioned generation, we keep its original archi-
tecture. For WriteLikeYou [23] and our SDT, we remove
their style and content encoder and directly input character
embeddings into their decoder.

We provide the experiment results in Tab. 7. From these
results, although Drawing [32] and WriteLikeYou [23]
achieve the better performance than their content-style-
conditioned generation settings (as shown in Sec. 4.3), our
SDT still achieves the best results in terms of Content Score
and DTW. Besides, compared with the content-conditioned
generation, our content-style-conditioned results (as shown

Table 7. Quantitative evaluations of our SDT and competitors on
content-conditioned generation of Indic handwritings.

Methods Content Score ↑ DTW ↓
Drawing [32] 26.07 2.7604
WriteLikeYou [23] 40.29 1.0503
Ours(SDT) 68.50 0.9748

in Sec. 4.3) obtain higher Content Score (i.e, 97.22% vs.
68.50%) and better DTW (i.e., 0.7075 vs. 0.9748), which
demonstrates that the extracted style representations by our
method further improve the generation quality in terms of
Content Score and DTW.

A.10. Data Representations of Online Characters

Generally, each online character is composed of a se-
quence of points and can be mathematically represented
as Y= [y1, ..., yL], where L is the length of Y . Fol-
lowing [32], each point is a vector with 5 elements
yt=

(
∆ut,∆vt,m

1
t ,m

2
t ,m

3
t

)
, where (∆ut,∆vt) are the

relative offsets from the current point to the previous point
and (m1

t -down, m2
t -up, m3

t -end) are three types of pen
states, which are mutually exclusive.

A.11. More Details about the Pen Moving Predic-
tion and Pen State Classification Losses

During training, we have the ground-truth point
yt=(∆u,∆v,m1,m2,m3) and the final output Ot =

(
{
π̂i, µ̂i

x, µ̂
i
y, δ̂

i
x, δ̂

i
y, ρ̂

i
xy

}R

i=1
, m̂1, m̂2, m̂3) of our decoder

at any time step t. Here, π̂i is the component weight of
different bivariate normal distributions, µ̂i

x and µ̂i
y are the

means of distributions, δ̂ix, δ̂iy denotes the standard devia-
tions of distributions and ρ̂ixy is the covariance, as suggested
in [23]. Then, the pen moving prediction loss for each time
step can be formulated as:

Lpre =

R∑
i=1

π̂iN
(
∆u,∆v | µ̂i

x, µ̂
i
y, δ̂

i
x, δ̂

i
y, ρ̂

i
xy

)
, (3)

where N (·) is the bivariate normal distribution function.
Regarding the pen state classification loss at any time

step, we formulate it as follows:

Lcls =

3∑
i=1

mi log m̂i. (4)

A.12. More Online Generation Results.

Fig. 8-Fig. 11 show qualitative comparisons between our
proposed SDT and the previous state-of-the-art work Write-
LikeYou [23] on online multilingual characters generation
(e.g., Chinese, Japanese, Indic and English scripts). The re-
sults suggest that our method is more competitive in both
style imitation and structure preservation of generated mul-
tilingual characters.
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Figure 3. Qualitative comparisons between our proposed SDT with four competitors, including zi2zi [25], DG-FONT [29], GANWrit-
ing [13] and HWT [4], on offline handwritten Chinese character generation.
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Figure 4. Qualitative comparisons between our proposed SDT with DG-FONT [29] and GANWriting [13], on offline handwritten Chinese
character generation.
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Figure 5. Qualitative comparisons between our proposed SDT with DG-FONT [29] and GANWriting [13], on offline handwritten Chinese
character generation.
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Figure 6. Qualitative comparisons between our proposed SDT with DG-FONT [29] and GANWriting [13], on offline handwritten Chinese
character generation.
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Figure 7. Qualitative comparisons between our proposed SDT with DG-FONT [29] and GANWriting [13], on offline handwritten Chinese
character generation.
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Figure 8. Additional generated online Chinese characters by our method and WriteLikeYou-v2 [23].
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Figure 9. Additional generated online Chinese characters by our method and WriteLikeYou-v2 [23].
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Figure 10. Additional generated online Chinese characters by our method and WriteLikeYou-v2 [23].
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Figure 11. Additional generated online characters, covering Japanese, Indic and English scripts, by our method and WriteLikeYou-v2 [23].
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