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A. Training with Known OOD Data
To further understand the usefulness of additional OOD

data for Selector training in our multimodal setting as sug-
gested in [7] for text-only NLP tasks, we provide an addi-
tional ablation: In Tab. 8 for the ID/OOD training setup,
we train only on the B set + the OK-VQA training set, i.e.
without VizWiz data (third line in each section of the ta-
ble). The OK-VQA is more similar to AdVQA compared
to VizWiz. However, we observe similar results compared
to using both OOD datasets: Additional Known OOD does
not consistently improve the results over the baseline (i.e.
most identical to the selector setup in [15]), especially for
low risk, the model with OK-VQA does not perform well.
Alternative use of such known OOD data in the multimodal
setting is out of scope for this work, but it is an interesting
avenue for future work to study how to potentially better
exploit such data.

Train Set
f Selector g C@1% C@5% C@10% AUC

90% VQA v2, 10% AdVQA

A B 19.00 41.64 58.97 9.34
A B + OOD 18.48 41.08 59.40 9.36
A B + OK-VQA 18.38 42.33 59.80 9.17

50% VQA v2, 50% AdVQA

A B 2.68 15.98 26.72 18.97
A B + OOD 2.56 14.93 26.82 19.08
A B + OK-VQA 1.73 15.37 26.33 18.86

Table 8. Results with exposure to known OOD examples for
OFA-Base. OOD = OK-VQA + VizWiz. Bold denotes best and
underline is second best per table section.

B. Additional OOD Results
We show the AUC for our models on various mixtures

of ID/OOD data in Fig. 5. Overall, our method consistently
improves AUC over the baseline, for the three models (note
lower is better for AUC).
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Figure 5. AUC for various mixtures of VQA v2 + AdVQA. Note:
Lower is better for AUC. The baselines for each model is Max-
Prob.

In Tabs. 15 to 19, we present the results for our ex-
periments on the all OOD mixtures of VQA v2 and Ad-
VQA [11]. While we on average see that the Selector mod-
els and Selector + LYP perform better than the correspond-
ing baselines models out-of-the-box (MaxProb), all models
degrade dramatically if there is a high percentage of OOD
data in the test mixture, especially for low risk (C@1%) or
high cost of error (Φ100). Especially if we look at the real-
istic scenario where the threshold is chosen on the valida-
tion set and used at test time (as for Φ100), we notice that
the scores of all methods drop below 0 with 33.3% or more
OOD data. This can be seen in the last column of Tabs. 17
to 19. These results demonstrate that these thresholds can
be overconfident on OOD examples, which leads to poor
abstention decisions such that the cost of the models’ incor-
rect outputs outweighs the gains of the correct ones. Fu-
ture work is needed to improve such OOD generalization
and recognizing samples that cannot reliably be answered
in this challenging setup, which this work provides a new
and interesting test setup for.

B.1. Alternative LYP Strategy

As mentioned in the main paper, there are cases where
LYP does not perform quite as well as the baseline Selector
that is trained on held-out data. This happens with OFA-
Large on high OOD levels, particularly with the Φ100 met-
ric, which involves generalizing a confidence threshold cho-
sen on ID data to test time where both ID and OOD data are
present. This is shown in Figs. 6 and 7, where at higher per-
centages of OOD, OFA-Large with LYP (+LYP) can have
lower C@5% and Φ100 than the baseline Selector trained on
held-out data (+Selector).

We propose a potential mitigation strategy for such
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Figure 6. Φ100 scores for OFA-L and OFA-B models. The Selec-
tor is trained on B, based on the VQA model trained on A. We also
show the alternative selector training strategy “LYP-A Self-B”.
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Figure 7. C@5% scores for OFA-L and OFA-B models. The Se-
lector is trained on B, based on the VQA model trained on A. We
also show the alternative selector training strategy “LYP-A Self-
B”.

cases. First, we use the VQA model trained only on the
A subset, instead of the one trained on the full A+B like in
LYP. Then, we train a Selector on the full A+B data, using
the following strategy: we use LYP only on the A subset and
use the model’s own labels on the B subset. This allows the
Selector to be trained partly on some data that was unseen
during the VQA model’s training, with real confidence la-
bels. This potentially helps the selector capture the model’s
real uncertainty. We call this strategy LYP-A Self-B and
report it in all Tabs. 15 to 19.

Fig. 6 illustrates the effect of this method on OFA-Base
and OFA-Large for the Φ100 metric. We show that us-
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ing this LYP-A Self-B strategy improves the Φ100 scores
significantly for OFA-Large, surpassing both the baselines
and the standard LYP. On OFA-Base, however, the base
Selector and LYP perform similarly while LYP-A Self-B
under-performs them. Therefore, it appears that this method
should not be applied in all cases but might help to im-
prove the results when LYP is less effective (e.g., because
the VQA model overfits too much on the training set while
not benefiting sufficiently from the additional training data
in B).

C. Jointly Training OFA and Selector
Discussed in Appendix D, for training Selector, we fol-

low a staged procedure [15]: The VQA model is first trained
until convergence on the VQA task. Then, the weights
are frozen, Selector is added to the model, and Selector is
learned on top of the frozen model.

Since we are able to train OFA and Selector on the same
data, a natural comparison to make is between the staged
training procedure we use and joint training (i.e., simulta-
neously optimizing the VQA model and Selector), similar
to [2]. We experiment with joint training by summing their
losses. We perform this on OFA-Base, training both OFA-
Base and Selector with the full A+B data. We also exper-
iment with first joint training OFA-Base and Selector until
OFA-Base has converged for the VQA task, freezing OFA-
Base, and continuing to fine-tune Selector on A+B.

The results in Tab. 9 illustrate that joint training de-
creases the overall performance of the Selector. All metrics
yield worse performance with joint training alone, though
the gap shrinks when freezing the VQA model and contin-
uing to fine-tune Selector. This is despite the fact that the
overall VQA accuracy remains roughly the same with or
without joint training. We conjecture that the reason for this
may be that joint training creates a somewhat non-stationary
optimization problem for Selector. Specifically, the VQA
model’s representations and VQA accuracy are changing
throughout training. This means that the statistics of the in-
puts and training targets for Selector (see Appendix D) are
changing, which may make optimizing Selector more diffi-
cult. Other techniques may be needed in order to properly
optimize the VQA model and Selector together.

D. Experimental Setups
D.1. Models

D.1.1 LYP Peer Models

Our LYP approach requires training peer models to label the
training data for the full Selector. For all LYP peer models,
we simply follow the corresponding VQA model training
settings. Once trained, we run inference on the respective
held-out sets for each peer to obtain labels.

Training Acc C@1% C@5% C@10% AUC

ID (100% VQA v2)

joint 75.08 16.04 42.78 65.91 8.11
joint+FT 75.08 24.42 50.01 69.20 7.21
staged 75.18 26.64 50.80 69.56 7.10

90% VQA v2, 10% AdVQA

joint 71.97 10.74 34.61 53.81 10.12
joint+FT 71.97 18.17 42.44 60.50 8.98
staged 72.00 19.72 42.70 60.84 8.90

Table 9. Comparison of joint and staged training of OFA-Base
and Selector. FT indicates that Selector is further fine-tuned after
OFA-Base converges on the VQA training objective. All models
are trained on A+B.

D.1.2 CLIP-ViL

We use the implementations for MaxProb and Selector pro-
vided by [15].2 For the CLIP-ViL MaxProb and Selector
models trained on held-out data (i.e., Train B), which ex-
actly match the setup of [15], we use the model weights
given by the authors as well. Note that the available model
weights are for a single run, whereas the results in [15] are
averaged over ten runs, so there are some variations in num-
bers between those reported in this work and [15]. Ad-
ditionally, we compare to the results in the arXiv version
of [15] as this has updated results (see appendix of [15]).
For the remaining CLIP-ViL models, we train them follow-
ing the provided hyperparameters and settings. We refer
readers to [15] for details.

D.1.3 OFA

OFA first processes the image using a convolutional net-
work [4] to obtain a set of visual representations Ṽ . Like-
wise, the question is tokenized and converted to a sequence
of question token embeddings Q̃. Then, the visual fea-
tures are flattened into a sequence and concatenated with
the question token embedding sequence. This entire se-
quence is given as input to an encoder-decoder transformer
model [13] to predict the answers. The encoder produces
multimodal representations of the image tokens {vi}|Ṽ |

i=1 and

question tokens {qj}|Q̃|
j=1. The encoded tokens are used as

input to cross-attention layers in the transformer decoder at
each decoding step. The decoder generates output token
representations {ol}Ll=1 for an answer of L tokens. These
token representations can be fed to a linear layer to give
the output logits over the token vocabulary. We use beam
search to decode the answers.

We fine-tune OFA from the pre-trained checkpoints pro-

2https://github.com/facebookresearch/reliable_
vqa
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OFA-Base OFA-Large

Batch Size 256 512
Learning Rate 1e-4 4e-4
LR warmup no no
LR-decay (linear) -1e-10/step -1e-10/step
Optimizer Adam Adam
Optimizer Beta (0.9,0.999) (0.9,0.999)
Gradient clipping 1.0 1.0
Selector Dropout 0.1 0.1
Main model dropout 0.1 0.1
Image size 480 480

Table 10. Hyperparameters for Selector Training on top of OFA

vided by the authors of [14].3 We follow the hyperparam-
eters from the original paper for fine-tuning. In the follow-
ing, we detail the setup for the selection functions:
MaxProb. Since OFA is a sequence-to-sequence model
that generates answers token-by-token, for the MaxProb
baseline, we use the joint probability of each answer to-
ken as the confidence value, similar to common decoding
algorithms like beam search.
Selector. We largely replicate the same Selector architec-
ture and training as [15] (i.e., two-layer MLP), but with
some slight differences. We remove the non-linear projec-
tion (or one-layer MLP) for each input representation. We
also use slightly different input representations: First, we
max-pool the encoder image (vi) and question (qi) token
representations to obtain a single representation for each set
of representations. Then, we extract the probability of the
predicted answer p, which is the joint probability of each
answer token. Finally, we extract the first output token em-
bedding o1 that is used to predict the first answer token. We
concatenate these representations and feed this as input to
the Selector.
Training Selector with OFA. We report the training param-
eters in Tab. 10. We first train the VQA model as discussed
above, freeze the VQA model, and then train Selector on top
of this frozen model, following [15]. We train for a maxi-
mum number of 32 epochs and perform early-stopping on
the Val split (Tab. 11) using the AUC metric. We keep the
dropout in the main model during the selector training, as
we found this improved performance of the selector.

D.2. Dataset Splits

D.2.1 In-Distribution Splits

We follow [15] and use the splits provided in the official
implementation. We detail the splits again in Tab. 11. Note,
in our work we repurpose the “Dev” set from [15] for our

3https://github.com/OFA-Sys/OFA

Split Usage Source %src #I #Q

Train A Train f ,g VQA v2 train 100% 82,783 443,757
Train B Train f, g VQA v2 val 40% 16,202 86,138
Val Validate f, g VQA v2 val 10% 4,050 21,878
Test Test h = (f, g) VQA v2 val 50% 20,252 106,338

Table 11. Size of the splits of VQA v2 from [15]. Note, the “Us-
age” is the setting for the full model (A+B). Some models are
trained on subsets (e.g., just A) as specified in the corresponding
tables.

Train B split. No images (or question-answer annotations)
are shared between splits.

D.2.2 ID/OOD Mixtures

We use AdVQA as our source of OOD data. As discussed,
AdVQA is an adversarial dataset where human annota-
tors intentionally ask questions that state-of-the-art models
trained on VQA v2 answer incorrectly. The images in Ad-
VQA come from [9], as do VQA v2. However, we consider
this as OOD since the questions are adversarial in nature and
contain distribution shifts meant to induce errors for models
trained on VQA v2.

In our work, we create mixtures of ID/OOD examples
for our evaluations. To form our mixtures, we first discard
all AdVQA images that overlap with the A+B train set. This
leaves 5,008 AdVQA examples. For each setting, we ran-
domly sample examples from the ID Test split (Tab. 11) to
create the desired OOD proportion: 45K for 10% OOD,
10K for 33% OOD, 5K for 50% OOD and 2.5K for 66%
OOD.

E. OOD Detection Features
In Table 3 of the main paper, we experiment with OOD

detection features as additional input to the selector, in-
spired by [1]. To compute those metrics, we use the repre-
sentations from the encoder of OFA. We average the output
question tokens qi and the image tokens vi, which respec-
tively yield q̄ and v̄. We compute OOD detection features
for each representation with respect to the training data. The
computed features are as follows:
kNN [12]. Given an input example, we compute the co-
sine distance to the k nearest neighbors in the training data.
This distance is used as an OOD score: higher scores signify
more “in-distribution” examples, while lower scores signify
“out-of-distribution”. We use the efficient vector-search li-
brary FAISS [5] to compute the distances and identify the
k closest points. We experimented with various numbers of
neighbors from 1 to 1000 and found no significant improve-
ments for any value. We also experimented with using the
distance to correct and incorrect neighbors, to align the dis-
tances to our task of selective prediction.
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SSD [10]. SSD [10] is a parametric OOD-detection method
that first builds k clusters in feature space and then fits a
multivariate normal distribution for each of the k ensem-
bles of features. For a new example, the Mahalanobis dis-
tance [8] to this normal distribution is used as an OOD
score. Note that for a classification task, the labels might
be used as clusters, but we prefer to use a cluster-based al-
gorithm, as the VQA answers do not represent a coherent
ensemble of image or question concepts. We experimented
with various numbers of clusters in the range of [1, 1000],
and saw no improvements.

For these OOD detection features, we give them as addi-
tional inputs to the Selector to provide a signal for whether
a given example is ID or OOD.

F. Threshold Generalization

In this section, we investigate threshold generalization.
All previous tables reported numbers on “maximum cover-
age” at risk R. This metric is irrespective of the threshold
chosen as it solves for the coverage that satisfies a given risk
level. In a real-world setting, the threshold would need to be
fixed once using a validation set and then used at test time.
We already evaluate this setting of evaluating the optimal
threshold on the validation set for the cost-based metric Φc

in the main paper. In contrast to Φc, which allows com-
paring a single number, for risk and coverage, choosing a
threshold on a validation set leads to changes in coverage
and risk, making it difficult to compare two methods. Still,
in this section, we evaluate how the threshold generalizes to
ID and OOD settings.
Our method improves risk generalization over out-of-
the-box MaxProb. In Fig. 8, we show the test risk on var-
ious ID/OOD mixtures with a threshold set on the ID vali-
dation split of VQA v2 for a target risk of 1%. We see that
LYP (solid line) consistently improves the generalization of
risk over the MaxProb baseline: The curves corresponding
to LYP are closer to the 1% target risk level compared to
MaxProb.
Risk generalization is limited for OOD data. While we
observe reasonable good risk generalization for ID, the gen-
eralization is really limited for larger percentages of OOD
data.
CLIP-ViL is the best model for risk generalization. We
see that all variants of CLIP-ViL outperform their corre-
sponding methods on OFA-B and OFA-L. Note that the as-
sociated coverages are lower for the same risk level, thus
CLIP-ViL is not the best method overall. This is somewhat
surprising, as [6] found that larger language models were
better calibrated on NLP tasks.

Full results are available in Tab. 20 and Tab. 21 for our
in-distribution testing set and our mixed setting with 90%
of VQA v2 and 10% of AdVQA examples.
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Figure 8. Risk at various percentages of OOD when the threshold
is optimized on the validation set for maximum coverage, with a
target risk level of 1%. The baseline for each model is MaxProb.

10% OOD

Model f train g train AUC C@1% C@5% C@10% Acc.

MaxProb A – 10.61 9.44 37.4 54.30 69.02
Selector A B 9.14 25.76 46.57 62.07 69.02
Selector + LYP AB AB 5.79 36.50 59.61 76.20 76.12

Table 12. OFA-Base results with 90% VQAv2 and 10% VizWiz
data. For LYP, the VQA model is trained on A+B and selector on
A+B with annotations from 10 models.

50% OOD

Model f train g train AUC C@1% C@5% C@10% Acc.

MaxProb A – 25.53 0.00 14.55 23.49 48.07
Selector A B 22.83 9.31 21.87 32.02 48.07
Selector + LYP AB AB 22.71 11.81 22.51 32.18 48.14

Table 13. OFA-Base results with 50% VQAv2 and 50% VizWiz
data. For LYP, the VQA model is trained on A+B and selector on
A+B with annotations from 10 models.

G. VizWiz as OOD Data Source

We show in Tabs. 12 and 13 results for our LYP method
on another OOD dataset: VizWiz [3]. This dataset is much
more different from the original VQA v2 than AdVQA: the
image and questions were collected by visually impaired
users using a smartphone. Therefore, this makes it easier
for models to discriminate between VQA and VizWiz ex-
amples. We see that overall, the coverages are much higher
for these setups than with AdVQA. We also see that our
LYP method is very efficient to improve the results over the
regular Selector model setup from [15].
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f train Model g train AUC C@1% C@5% C@10% Acc

A MaxProb – 10.10 6.69 28.08 49.75 77.31
Selector B 8.86 13.19 38.51 59.29 77.24

AB
MaxProb – 8.78 12.04 35.44 59.56 77.88
Selector AB (Self) 8.49 12.62 37.69 61.64 77.91
Selector AB (LYP) 8.22 16.57 40.02 62.90 77.91

Table 14. OFA-Base results on SNLI-VE (without textual
premise).

H. Selective Prediciton for Visual Entailment
We show experiments for our models and LYP on the vi-

sual entailment dataset SNLI-VE [16] in Tab. 14. Given an
image premise, and a text hypothesis, the model has to re-
turn one of the three possible outputs: entailment, neutral,
or contradiction. We run the experiments on OFA-Base,
and use the same setup as the original OFA paper [14], ex-
cept that we do not use the textual premise to make it com-
parable to previous works. We divide the SNLI-VE training
set into 80% for the A split, and the remaining 20% for the
B split. We use the original validation and test splits for
model selection and test.

We see that LYP is very effective on this task: it improves
the coverage across all risk levels compared to MaxProb and
Selector baselines.

I. Qualitative Examples
Figs. 9 to 11 show qualitative results comparing the

OFA-Large + LYP and OFA-Large + MaxProb, on the Ad-
VQA dataset. In both cases, the OFA-Large model f is
trained on A+B. For all examples, the abstention threshold
is set on the in-distribution validation set to get maximum
coverage at 5% risk.

Fig. 9 shows examples where the VQA model (OFA-
Large) is incorrect. Thus, the correct behavior is to abstain.
But the MaxProb model does not abstain using the provided
threshold, instead, it answers incorrectly. On the contrary,
our model OFA-L + LYP abstains.

Fig. 10 shows examples where the OFA-L model is cor-
rect: the best behavior is to answer. The MaxProb model
abstains, while our method answers correctly.

Fig. 11 shows two kinds of failure cases of our mod-
els: In the first line, OFA-L + LYP incorrectly abstains, as
the VQA model was correct. In the second line, our model
incorrectly answer instead of abstaining, as the answer pro-
vided by the model was incorrect.
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VQA Model f Selection func. g Acc ↑ C@R in % ↑ AUC ↓ Φ1 Φ10 Φ100

Name Train Set Name Train Set Targets C@1% C@5% C@10%

CLIP-ViL

A MaxProb - - [15] 69.98 4.97 33.79 53.62 10.92 54.67 21.40 1.32
Selector B Self [15] 69.98 15.79 37.79 55.65 10.21 55.44 25.82 8.74

A+B
MaxProb - - 70.72 5.54 34.84 55.04 10.49 55.93 22.81 2.59
Selector A+B Self 70.72 6.45 34.26 56.07 10.48 56.07 22.99 2.39
Selector A+B LYP 70.72 18.40 38.65 57.40 9.76 56.53 26.45 9.74

OFA-Base

A MaxProb - - 74.87 3.45 45.60 66.61 7.99 62.52 30.57 6.81
Selector B Self 74.87 23.78 49.16 69.00 7.32 63.03 34.39 12.53
Selector A+B LYP-A Self-B 74.87 26.03 51.18 69.97 7.13 63.48 35.91 14.38

A+B
MaxProb - - 75.18 14.88 46.15 67.51 7.79 63.04 30.13 7.29
Selector A+B Self 75.18 26.64 50.80 69.56 7.10 63.66 34.92 12.92
Selector A+B LYP 75.18 27.71 51.64 70.20 6.98 63.88 36.29 16.30

OFA-Large

A MaxProb - - 77.53 20.57 53.99 75.18 6.42 66.68 36.12 8.21
Selector B Self 77.53 30.86 58.05 76.65 5.81 67.34 41.43 17.58
Selector A+B LYP-A Self-B 77.53 32.05 59.05 77.10 5.69 67.61 42.10 18.55

A+B
MaxProb - - 77.79 16.31 53.83 75.27 6.43 66.96 36.06 6.29
Selector A+B Self 77.79 31.47 58.80 77.14 5.69 67.82 41.43 16.08
Selector A+B LYP 77.79 32.92 59.43 77.52 5.60 68.02 42.83 18.78

Table 15. Risk-coverage metrics and effective reliability on ID data (i.e., VQA v2 test split [15]). Scores for OFA-Large are averaged over
5 trials. This table is a copy from the main paper with the additional lines “LYP-A Self-B”, discussed in Appendix B.1.

VQA Model f Selection function g Acc ↑ C@R in % ↑ AUC ↓ Φ1 Φ10 Φ100

Name Train Set Name Train Set Targets C@1% C@5% C@10%

CLIP-ViL

A MaxProb - - [15] 66.35 0.00 24.16 43.53 13.55 49.12 14.39 -4.64
Selector B Self [15] 66.35 12.69 31.12 46.96 12.47 50.36 20.15 5.22

A+B
MaxProb - - 67.12 2.60 26.13 45.25 12.97 50.49 16.59 -0.93
Selector A+B Self 67.12 2.97 26.70 46.19 12.80 50.89 18.19 -0.65
Selector A+B LYP 67.12 15.22 32.58 49.18 11.90 51.43 22.09 7.12

OFA-Base

A MaxProb - - 71.59 0.01 36.07 56.49 10.10 57.49 23.15 -0.34
Selector B Self 71.59 18.32 41.48 59.74 9.19 57.97 27.22 9.09
Selector A+B LYP-A Self-B 71.61 19.49 43.04 61.04 9.00 58.43 29.23 7.68

A+B
MaxProb - - 72.00 1.74 37.02 57.57 9.78 58.11 22.09 0.53
Selector A+B Self 72.00 19.72 42.70 60.84 8.90 58.90 28.05 2.88
Selector A+B LYP 72.00 21.58 44.09 61.69 8.74 59.11 28.79 10.88

OFA-Large

A MaxProb - - 74.56 4.76 44.53 66.06 8.21 61.90 28.20 0.21
Selector B Self 74.56 23.53 50.17 68.76 7.33 62.96 34.43 9.88
Selector A+B LYP-A Self-B 74.56 24.34 50.78 69.46 7.25 63.15 34.79 11.55

A+B
MaxProb - - 74.79 1.30 43.70 65.95 8.26 62.24 27.09 -2.46
Selector A+B Self 74.79 22.68 50.27 69.27 7.32 63.03 33.50 4.92
Selector A+B LYP 74.79 25.38 51.07 69.74 7.17 63.41 34.85 10.34

Table 16. Mixed ID/OOD scenario, composed of 90% VQA v2 and 10% AdVQA examples. This table is a copy from the main paper with
the additional lines “LYP-A Self-B”, discussed in Appendix B.1.
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VQA Model f Selection function g Acc ↑ C@R in % ↑ AUC ↓ Φ1 Φ10 Φ100

Name Train Set Name Train Set Targets C@1% C@5% C@10%

CLIP-ViL

A MaxProb - - [15] 58.36 0.00 7.08 21.97 20.62 36.59 -1.47 -14.38
Selector B Self [15] 58.36 5.87 17.41 29.21 18.90 38.76 7.11 -2.20

A+B
MaxProb - - 59.29 1.11 10.17 24.99 19.58 38.42 2.99 -9.79
Selector A+B Self 59.29 0.07 11.21 25.86 19.28 39.17 5.90 -7.37
Selector A+B LYP 59.29 7.07 19.13 31.53 17.94 39.85 12.67 3.40

OFA-Base

A
MaxProb - - 64.17 0.01 18.83 34.15 15.71 46.05 5.33 -28.66
Selector B Self 64.17 6.97 25.19 39.53 14.44 46.41 11.98 -3.47
Selector A+B LYP-A Self-B 64.16 6.76 25.39 41.49 14.26 46.99 14.42 -9.89

A+B
MaxProb - - 64.63 0.03 17.57 33.94 15.43 46.32 2.11 -19.21
Selector A+B Self 64.63 5.11 25.83 40.13 14.09 47.58 10.75 -21.18
Selector A+B LYP 64.63 9.41 27.89 42.00 13.80 48.03 11.89 -2.81

OFA-Large

A
MaxProb - - 67.78 0.39 22.67 43.82 13.05 50.88 10.05 -20.68
Selector B Self 67.79 9.18 32.42 50.06 11.60 52.74 18.31 -12.07
Selector A+B LYP-A Self-B 67.79 11.24 31.01 50.37 11.65 52.76 18.47 -6.53

A+B
MaxProb - - 67.78 0.13 21.01 42.31 13.37 51.02 7.58 -26.60
Selector A+B Self 67.77 6.58 30.15 48.83 11.98 51.79 15.37 -23.92
Selector A+B LYP 67.77 9.44 30.87 49.69 11.75 52.51 16.95 -12.91

Table 17. Results on a mixed ID/OOD setting, composed of 66.7% VQA v2 data (Test split in Tab. 11) and 33.3% AdVQA examples.
Discussion in Appendix B.

VQA Model f Selection function g Acc ↑ C@R in % ↑ AUC ↓ Φ1 Φ10 Φ100

Name Train Set Name Train Set Targets C@1% C@5% C@10%

CLIP-ViL

A MaxProb - - [15] 52.66 0.00 3.08 9.77 26.57 27.65 -13.20 -20.60
Selector B Self [15] 52.66 4.19 10.29 18.17 24.49 30.62 -2.24 -7.94

A+B
MaxProb - - 53.83 0.97 3.66 12.27 25.23 29.82 -6.40 -15.61
Selector A+B Self 53.83 0.04 5.52 13.38 24.96 30.82 -2.96 -11.50
Selector A+B LYP 53.83 3.41 11.19 20.42 23.22 31.85 5.49 -0.04

OFA-Base

A
MaxProb - - 59.17 0.01 5.78 18.48 20.80 38.14 -6.11 -29.98
Selector B Self 59.18 3.21 15.98 26.27 19.00 38.49 0.10 -11.07
Selector A+B LYP-A Self-B 59.18 2.28 15.38 26.72 18.80 39.24 3.46 -19.92

A+B
MaxProb - - 59.61 0.06 6.91 20.86 20.17 38.45 -12.19 -31.48
Selector A+B Self 59.62 2.29 15.78 27.38 18.70 39.88 -0.74 -36.10
Selector A+B LYP 59.62 3.98 17.13 28.53 18.30 40.35 -0.49 -11.27

OFA-Large

A
MaxProb - - 63.02 0.31 11.53 27.85 17.18 43.42 -3.11 -34.01
Selector B Self 63.01 5.56 20.11 35.51 15.52 45.49 6.48 -26.57
Selector A+B LYP-A Self-B 63.01 5.07 19.65 34.80 15.61 45.55 6.11 -18.23

A+B
MaxProb - - 62.93 0.12 6.22 26.58 17.58 43.40 -6.02 -40.93
Selector A+B Self 62.93 1.00 18.55 33.48 16.03 44.14 2.57 -43.03
Selector A+B LYP 62.93 3.51 19.74 34.18 15.78 45.03 4.19 -29.46

Table 18. Results on a mixed ID/OOD setting, composed of 50% VQA v2 data (Test split in Tab. 11) and 50% AdVQA examples.
Discussion in Appendix B.

8



VQA Model f Selection function g Acc ↑ C@R in % ↑ AUC ↓ Φ1 Φ10 Φ100

Name Train Set Name Train Set Targets C@1% C@5% C@10%

CLIP-ViL

A MaxProb - - [15] 46.66 0.00 0.00 3.04 33.67 18.32 -24.68 -28.56
Selector B Self [15] 46.66 1.91 5.65 10.09 31.43 22.00 -11.50 -12.05

A+B
MaxProb - - 47.94 0.67 1.28 5.59 32.08 20.87 -16.85 -21.99
Selector A+B Self 47.94 0.05 1.44 5.49 31.79 22.20 -11.69 -15.28
Selector A+B LYP 47.94 2.13 6.60 10.44 29.77 23.60 -0.77 -0.89

OFA-Base

A MaxProb - - 53.71 0.00 0.45 8.44 26.47 29.64 -17.60 -43.15
Selector B Self 53.77 2.00 8.23 15.97 24.45 30.21 -10.46 -16.01
Selector A+B LYP-A Self B 53.77 1.73 7.79 15.51 24.35 30.86 -7.20 -28.39

A+B
MaxProb - - 54.28 0.03 0.53 10.16 25.72 29.96 -25.56 -44.75
Selector A+B Self 54.26 1.52 8.79 16.23 24.15 31.88 -12.68 -52.56
Selector A+B LYP 54.26 1.95 9.71 17.11 23.79 32.38 -12.12 -20.65

OFA-Large

A MaxProb - - 57.69 0.13 3.65 14.24 22.36 34.91 -16.36 -49.70
Selector B Self 57.71 3.03 11.20 22.04 20.44 37.45 -5.27 -39.01
Selector A+B LYP-A Self-B 57.71 1.89 10.78 20.09 20.63 37.51 -6.12 -30.14

A+B
MaxProb - - 57.52 0.08 0.54 13.41 22.87 34.70 -20.37 -56.21
Selector A+B Self 57.50 0.46 9.02 20.14 21.10 35.39 -10.72 -61.53
Selector A+B LYP 57.50 0.08 10.28 19.93 20.94 36.60 -8.58 -44.52

Table 19. Results on a mixed ID/OOD setting, composed of 33.3% VQA v2 data (Test split in Tab. 11) and 66.7% AdVQA examples.
Discussion in Appendix B.

VQA Model f Selection function g
Acc ↑ R = 1% R = 5% R = 10%

Name Train Set Name Train Set Targets R C R C R C

CLIP-ViL

A
MaxProb - - [15] 69.98 0.86 3.49 4.55 31.59 9.60 52.35
Selector B Self [15] 69.98 0.72 13.26 4.74 36.66 9.97 55.58

A+B
MaxProb - - 70.72 1.08 6.67 4.59 32.85 9.83 54.47
Selector A+B Self 70.72 1.10 7.60 4.78 34.16 9.73 54.63
Selector A+B LYP 70.72 0.85 16.78 4.96 38.30 10.08 57.34

OFA-Base

A
MaxProb - - 74.87 1.18 5.32 4.96 45.45 9.96 66.44
Selector B Self 74.87 1.05 24.54 5.07 49.53 10.18 69.67

A+B
MaxProb - - 75.18 0.82 4.32 4.98 46.03 10.08 67.88
Selector A+B Self 75.18 1.14 27.88 5.23 51.76 10.09 69.87
Selector A+B LYP 75.18 1.00 27.84 5.17 52.44 10.35 71.31

OFA-Large

A
MaxProb - - 77.53 0.99 20.46 4.95 53.73 9.80 74.51
Selector B Self 77.53 1.10 32.01 5.04 58.23 9.98 76.63

A+B
MaxProb - - 77.80 1.01 15.06 4.85 53.11 9.83 74.67
Selector A+B Self 77.79 1.00 31.45 4.94 58.57 9.97 77.08
Selector A+B LYP 77.79 0.99 32.79 4.99 59.39 10.05 77.67

Table 20. Results on the ID VQA v2 evaluation set (Test split in Tab. 11). Thresholds for desired risk level are selected on the in-distribution
Val split. Discussion in Appendix F.
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VQA Model f Selection function g
Acc ↑ R = 1% R = 5% R = 10%

Name Train Set Name Train Set Targets R C R C R C

CLIP-ViL

A
MaxProb - - [15] 66.35 1.83 3.21 6.25 29.53 12.05 50.06
Selector B Self [15] 66.35 0.95 12.14 5.75 33.92 11.78 52.33

A+B
MaxProb - - 67.12 1.59 6.11 5.97 30.70 12.02 52.14
Selector A+B Self 67.12 1.52 6.97 6.04 31.95 11.63 51.83
Selector A+B LYP 67.12 1.14 15.26 5.81 35.46 11.72 54.08

OFA-Base

A
MaxProb - - 71.59 1.69 4.88 6.54 43.00 12.11 64.13
Selector B Self 71.60 1.43 22.60 6.19 46.18 12.23 67.04

A+B
MaxProb - - 72.00 1.30 3.95 6.56 43.59 12.05 65.67
Selector A+B Self 72.02 1.60 25.72 6.49 48.75 11.82 67.13
Selector A+B LYP 72.01 1.38 25.61 6.27 48.97 12.07 68.25

OFA-Large

A
MaxProb - - 74.56 1.58 18.93 6.50 51.43 11.96 73.01
Selector B Self 74.56 1.56 29.66 6.23 55.37 11.84 74.44

A+B
MaxProb - - 74.79 1.57 13.90 6.50 50.93 12.00 73.16
Selector A+B Self 74.79 1.52 29.05 6.34 55.91 11.90 75.17
Selector A+B LYP 74.79 1.47 30.17 6.29 56.31 11.99 75.66

Table 21. Results on the mixed 90% VQA v2 + 10% AdVQA evaluation set (VQA v2 data is from the Test split in Tab. 11). Thresholds
for desired risk level are selected on our in-distribution Val set. Discussion in Appendix F.

Q: Are the boards on the
bench flat or rounded?

Groundtruth A: rounded

A: flat

A: [abstain]
OFA Large + LYP

OFA Large            Q: What color will the
light be when the vehicle
has permission to
proceed ?

Groundtruth A: green

A: red

A: [abstain]
OFA Large + LYP

OFA Large           

Q: Which one of the
following is NOT pictured
here: sled, cat or bear?

Groundtruth A: cat

A: bear

A: [abstain]
OFA Large + LYP

OFA Large           
Q: Are all the cows blac
and white?

Groundtruth A: no

A: yes

A: [abstain]
OFA Large + LYP

OFA Large           

Figure 9. Qualitative examples for OFA-Large on AdVQA: On those examples, the baseline (MaxProb) answers incorrectly the answer,
and our model with LYP abstains. For both models, the threshold is selected on in-distribution data for maximum coverage at 5% risk.
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Q: What is the cat laying
on? 


Grountruth A: chair




A: [abstain]



A: chair

OFA Large + LYP

OFA Large           

Q: How many plane
engines? 


Grountruth A: 2




A: [abstain]

A: 2
OFA Large + LYP

OFA Large           

Q: How many teddy bear
have shoes in the
picture? 


Grountruth A: 1




A: [abstain]

A: 1
OFA Large + LYP

OFA Large           
Q: Are there sticks on the
ground? 


Grountruth A: yes




A: [abstain]

A: yes

OFA Large + LYP

OFA Large           

Figure 10. Qualitative examples for OFA-Large on AdVQA: On those examples, the baseline model abstains but had predicted the correct
answer. OFA-Large + LYP does not abstain. The threshold is selected on in-distribution data for maximum coverage at 5% risk.

Q: What is the giraffe
doing ?

Grountruth A: eating

A: eating

A: [abstain]
OFA Large + LYP

OFA Large           
Q: What is this object
resemble?

Grountruth A: umbrella

A: umbrella

A: [abstain]
OFA Large + LYP

OFA Large           

Q: Is this a dalmatian?

Grountruth A: no

A: [abstain]

A: yes
OFA Large + LYP

OFA Large           
Q: What fruit is in the
bowl?

Grountruth A: pears

A: [abstain]

A: apples
OFA Large + LYP

OFA Large           

Figure 11. Failure cases for OFA-Large + LYP on AdVQA: On the first two examples, the baseline predicts the correct answer, and
OFA-Large + LYP abstains. On the second line, the baseline abstains from answering an incorrect answer, while OFA-Large + LYP still
answers. For both models, the threshold is selected on in-distribution data for maximum coverage at 5% risk.
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